skip to main content


Search for: All records

Creators/Authors contains: "Katragadda, Satya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Travel patterns and mobility affect the spread of infectious diseases like COVID-19. However, we do not know to what extent local vs. visitor mobility affects the growth in the number of cases. This study evaluates the impact of state-level local vs. visitor mobility in understanding the growth with respect to the number of cases for COVID spread in the United States between March 1, 2020, and December 31, 2020. Two metrics, namely local and visitor transmission risk, were extracted from mobility data to capture the transmission potential of COVID-19 through mobility. A combination of the three factors: the current number of cases, local transmission risk, and the visitor transmission risk, are used to model the future number of cases using various machine learning models. The factors that contribute to better forecast performance are the ones that impact the number of cases. The statistical significance of the forecasts is also evaluated using the Diebold–Mariano test. Finally, the performance of models is compared for three waves across all 50 states. The results show that visitor mobility significantly impacts the case growth by improving the prediction accuracy by 33.78%. We also observe that the impact of visitor mobility is more pronounced during the first peak, i.e., March–June 2020.

     
    more » « less
  2. Abstract

    Advances in wearable technologies provide the opportunity to monitor many physiological variables continuously. Stress detection has gained increased attention in recent years, mainly because early stress detection can help individuals better manage health to minimize the negative impacts of long-term stress exposure. This paper provides a unique stress detection dataset created in a natural working environment in a hospital. This dataset is a collection of biometric data of nurses during the COVID-19 outbreak. Studying stress in a work environment is complex due to many social, cultural, and psychological factors in dealing with stressful conditions. Therefore, we captured both the physiological data and associated context pertaining to the stress events. We monitored specific physiological variables such as electrodermal activity, Heart Rate, and skin temperature of the nurse subjects. A periodic smartphone-administered survey also captured the contributing factors for the detected stress events. A database containing the signals, stress events, and survey responses is publicly available on Dryad.

     
    more » « less
  3. Abstract Human mobility plays an important role in the dynamics of infectious disease spread. Evidence from the initial nationwide lockdowns for COVID− 19 indicates that restricting human mobility is an effective strategy to contain the spread. While a direct correlation was observed early on, it is not known how mobility impacted COVID− 19 infection growth rates once lockdowns are lifted, primarily due to modulation by other factors such as face masks, social distancing, and the non-linear patterns of both mobility and infection growth. This paper introduces a piece-wise approach to better explore the phase-wise association between state-level COVID− 19 incidence data and anonymized mobile phone data for various states in the United States. Prior literature analyzed the linear correlation between mobility and the number of cases during the early stages of the pandemic. However, it is important to capture the non-linear dynamics of case growth and mobility to be usable for both tracking and forecasting COVID− 19 infections, which is accomplished by the piece-wise approach. The associations between mobility and case growth rate varied widely for various phases of the epidemic curve when the stay-at-home orders were lifted. The mobility growth patterns had a strong positive association of 0.7 with the growth in the number of cases, with a lag of 5 to 7 weeks, for the fast-growth phase of the pandemic, for only 20 states that had a peak between July 1st and September 30, 2020. Overall though, mobility cannot be used to predict the rise in the number of cases after initial lockdowns have been lifted. Our analysis explores the gradual diminishing value of mobility associations in the later stage of the outbreak. Our analysis indicates that the relationship between mobility and the increase in the number of cases, once lockdowns have been lifted, is tenuous at best and there is no strong relationship between these signals. But we identify the remnants of the last associations in specific phases of the growth curve. 
    more » « less
  4. Abstract

    Containing the COVID-19 pandemic while balancing the economy has proven to be quite a challenge for the world. We still have limited understanding of which combination of policies have been most effective in flattening the curve; given the challenges of the dynamic and evolving nature of the pandemic, lack of quality data etc. This paper introduces a novel data mining-based approach to understand the effects of different non-pharmaceutical interventions in containing the COVID-19 infection rate. We used the association rule mining approach to perform descriptive data mining on publicly available data for 50 states in the United States to understand the similarity and differences among various policies and underlying conditions that led to transitions between different infection growth curve phases. We used a multi-peak logistic growth model to label the different phases of infection growth curve. The common trends in the data were analyzed with respect to lockdowns, face mask mandates, mobility, and infection growth. We observed that face mask mandates combined with mobility reduction through moderate stay-at-home orders were most effective in reducing the number of COVID-19 cases across various states.

     
    more » « less
  5. Power grid operators rely on solar irradiance forecasts to manage uncertainty and variability associated with solar power. Meteorological factors such as cloud cover, wind direction, and wind speed affect irradiance and are associated with a high degree of variability and uncertainty. Statistical models fail to accurately capture the dependence between these factors and irradiance. In this paper, we introduce the idea of applying multivariate Gated Recurrent Units (GRU) to forecast Direct Normal Irradiance (DNI) hourly. The proposed GRU-based forecasting method is evaluated against traditional Long Short-Term Memory (LSTM) using historical irradiance data (i.e., weather variables that include cloud cover, wind direction, and wind speed) to forecast irradiance forecasting over intra-hour and inter-hour intervals. Our evaluation on one of the sites from Measurement and Instrumentation Data Center indicate that both GRU and LSTM improved DNI forecasting performance when evaluated under different conditions. Moreover, including wind direction and wind speed can have substantial improvement in the accuracy of DNI forecasts. Besides, the forecasting model can accurately forecast irradiance values over multiple forecasting horizons. 
    more » « less