- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
01000030000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Crowston, K (2)
-
Katsaggelos, A K (2)
-
Katsaggelos, A. K. (2)
-
Østerlund, C (2)
-
Aalders, M. C. (1)
-
Alfeld, M. (1)
-
Allen, S. (1)
-
Areeda, J. (1)
-
Bahaadini, S. (1)
-
Banagiri, S (1)
-
Baranowski, V-G (1)
-
Berry, C (1)
-
Berry, C P (1)
-
Berry, C. P. L. (1)
-
Cossairt, O. (1)
-
Coughlin, M. (1)
-
Coughlin, S B (1)
-
Coughlin, S. (1)
-
Crowston, K. (1)
-
Doctor, Z (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a revolutionary breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, potentially masking or appearing as gravitational wave signals themselves. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to its architecture’s simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Our contributions include evaluating fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. This development seeks to enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena.more » « lessFree, publicly-accessible full text available January 23, 2025
-
Fiske, L. D. ; Katsaggelos, A. K. ; Aalders, M. C. ; Alfeld, M. ; Walton, M. ; Cossairt, O. ( , 2021 IEEE International Conference on Image Processing (ICIP))
-
Soni, S ; Berry, C P ; Coughlin, S B ; Harandi, M ; Jackson, C B ; Crowston, K ; Østerlund, C ; Patane, O ; Katsaggelos, A K ; Trouille, L ; et al ( , Classical and Quantum Gravity)null (Ed.)
-
Coughlin, S. ; Bahaadini, S. ; Rohani, N. ; Zevin, M. ; Patane, O. ; Harandi, M. ; Jackson, C. ; Noroozi, V. ; Allen, S. ; Areeda, J. ; et al ( , Physical Review D)