- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kattakuri, Vikranth (2)
-
Panchal, Jitesh H. (2)
-
Bilionis, I. (1)
-
Safarkhani, Salar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Space mission-related projects are demanding and risky undertakings because of their complexity and cost. Many missions have failed over the years due to anomalies in either the launch vehicle or the spacecraft. Projects of such magnitude with undetected flaws due to ineffective process controls account for huge losses. Such failures continue to occur despite the studies on systems engineering process deficiencies and the state-of-the-art systems engineering practices in place. To further explore the reasons behind majority of the failures, we analyzed the failure data of space missions that happened over the last decade. Based on that information, we studied the launch-related failure events from a design decision-making perspective by employing failure event chain-based framework and identified some dominant cognitive biases that might have impacted the overall system performance leading to unintended catastrophes. The results of the study are presented in this paper.more » « less
-
Safarkhani, Salar; Kattakuri, Vikranth; Bilionis, I.; Panchal, Jitesh H. (, Council of Engineering Systems Universities (CESUN) Global Conference)We present a principal-agent model of a one-shot, shallow, systems engineering process. The process is "one-shot" in the sense that decisions are made during a one-time step and that they are final. The term "shallow" refers to a one-layer hierarchy of the process. Specifically, we assume that the systems engineer has already decomposed the problem in subsystems and that each subsystem is assigned to a different subsystem engineer. Each subsystem engineer works independently to maximize their own expected payoff. The goal of the systems engineer is to maximize the system-level payoff by incentivizing the subsystem engineers. We restrict our attention to requirements-based system-level payoffs, i.e., the systems engineer makes a profit only if all the design requirements are met. We illustrate the model using the design of an Earth-orbiting satellite system where the systems engineer determines the optimum incentive structures and requirements for two subsystems: the propulsion subsystem and the power subsystem. The model enables the analysis of a systems engineer's decisions about optimal passed-down requirements and incentives for sub-system engineers under different levels of task difficulty and associated costs. Sample results, for the case of risk-neutral systems and subsystems engineers, show that it is not always in the best interest of the systems engineer to pass down the true requirements. As expected, the model predicts that for small to moderate task uncertainties the optimal requirements are higher than the true ones, effectively eliminating the probability of failure for the systems engineer. In contrast, the model predicts that for large task uncertainties the optimal requirements should be smaller than the true ones in order to lure the subsystem engineers into participation.more » « less
An official website of the United States government

Full Text Available