skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Principal-Agent Model of Systems Engineering Processes with Application to Satellite Design
We present a principal-agent model of a one-shot, shallow, systems engineering process. The process is "one-shot" in the sense that decisions are made during a one-time step and that they are final. The term "shallow" refers to a one-layer hierarchy of the process. Specifically, we assume that the systems engineer has already decomposed the problem in subsystems and that each subsystem is assigned to a different subsystem engineer. Each subsystem engineer works independently to maximize their own expected payoff. The goal of the systems engineer is to maximize the system-level payoff by incentivizing the subsystem engineers. We restrict our attention to requirements-based system-level payoffs, i.e., the systems engineer makes a profit only if all the design requirements are met. We illustrate the model using the design of an Earth-orbiting satellite system where the systems engineer determines the optimum incentive structures and requirements for two subsystems: the propulsion subsystem and the power subsystem. The model enables the analysis of a systems engineer's decisions about optimal passed-down requirements and incentives for sub-system engineers under different levels of task difficulty and associated costs. Sample results, for the case of risk-neutral systems and subsystems engineers, show that it is not always in the best interest of the systems engineer to pass down the true requirements. As expected, the model predicts that for small to moderate task uncertainties the optimal requirements are higher than the true ones, effectively eliminating the probability of failure for the systems engineer. In contrast, the model predicts that for large task uncertainties the optimal requirements should be smaller than the true ones in order to lure the subsystem engineers into participation.  more » « less
Award ID(s):
1728165
PAR ID:
10105621
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Council of Engineering Systems Universities (CESUN) Global Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Systems engineering processes (SEPs) coordinate the effort of different individuals to generate a product satisfying certain requirements. As the involved engineers are self-interested agents, the goals at different levels of the systems engineering hierarchy may deviate from the system-level goals, which may cause budget and schedule overruns. Therefore, there is a need of a systems engineering theory that accounts for the human behavior in systems design. As experience in the physical sciences shows, a lot of knowledge can be generated by studying simple hypothetical scenarios, which nevertheless retain some aspects of the original problem. To this end, the objective of this article is to study the simplest conceivable SEP, a principalagent model of a one-shot, shallow SEP. We assume that the systems engineer (SE) maximizes the expected utility of the system, while the subsystem engineers (sSE) seek to maximize their expected utilities. Furthermore, the SE is unable to monitor the effort of the sSE and may not have complete information about their types. However, the SE can incentivize the sSE by proposing specific contracts. To obtain an optimal incentive, we pose and solve numerically a bilevel optimization problem. Through extensive simulations, we study the optimal incentives arising from different system-level value functions under various combinations of effort costs, problem-solving skills, and task complexities. Our numerical examples show that, the passed-down requirements to the agents increase as the task complexity and uncertainty grow and they decrease with increasing the agents' costs. 
    more » « less
  2. This work presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method. 
    more » « less
  3. With the emergence of the Internet of Things that allows communications and local computations and with the vision of Industry 4.0, a foreseeable transition is from centralized system planning and operation toward decentralization with interacting components and subsystems, e.g., self-optimizing factories. In this article, a new ``price-based'' decomposition and coordination methodology is developed to efficiently coordinate a system consisting of distributed subsystems such as machines and parts, which are described by mixed-integer linear programming (MILP) formulations, in an asynchronous way. The novel method is a dual approach, whereby the coordination is performed by updating Lagrangian multipliers based on economic principles of ``supply and demand.'' To ensure low communication requirements within the method, exchanges between the ``coordinator'' and subsystems are limited to ``prices'' (Lagrangian multipliers) broadcast by the coordinator and to subsystem solutions sent at the coordinator. Asynchronous coordination, however, may lead to convergence difficulties since the order in which subsystem solutions arrive at the coordinator is not predefined as a result of uncertainties in communication and solving times. Under realistic assumptions of finite communication and solve times, the convergence of our method is proven by innovatively extending the Lyapunov stability theory. Numerical testing of generalized assignment problems through simulation demonstrates that the method converges fast and provides near-optimal results, paving the way for self-optimizing factories in the future. Accompanying CPLEX codes and data are included. 
    more » « less
  4. Abstract System design is commonly thought of as a process of maximizing a design objective subject to constraints, among which are the system requirements. Given system-level requirements, a convenient management approach is to disaggregate the system into subsystems and to “flowdown” the system-level requirements to the subsystem or lower levels. We note, however, that requirements truly are constraints, and they typically impose a penalty on system performance. Furthermore, disaggregation of the system-level requirements into the flowdown requirements creates added sets of constraints, all of which have the potential to impose further penalties on overall system performance. This is a highly undesirable effect of an otherwise beneficial system design management process. This article derives conditions that may be imposed on the flowdown requirements to assure that they do not penalize overall system performance beyond the system-level requirement. 
    more » « less
  5. Abstract This paper explores the use of Gaussian process regression for system identification in control engineering. It introduces two novel approaches that utilize the data from a measured global system error. The paper demonstrates these approaches by identifying a simulated system with three subsystems, a one degree of freedom mass with two antagonist muscles. The first approach uses this whole-system error data alone, achieving accuracy on the same order of magnitude as subsystem-specific data ( 9.28 ± 0.87 N  vs.  6.96 ± 0.32 N of total model errors). This is significant, as it shows that the same data set can be used to identify unique subsystems, as opposed to requiring a set of data descriptive of only a single subsystem. The second approach demonstrated in this paper mixes traditional subsystem-specific data with the whole system error data, achieving up to 98.71% model improvement. 
    more » « less