skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Katul, Gabriel G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The drag coefficient Cd for a rigid and uniformly distributed rod canopy covering a sloping channel following the instantaneous collapse of a dam was examined using flume experiments. The measurements included space x and time t high resolution images of the water surface h(x, t) for multiple channel bed slopes So and water depths behind the dam Ho along with drag estimates provided by sequential load cells. Using these data, an analysis of the Saint-Venant equation (SVE) for the front speed was conducted using the diffusive wave approximation. An inferred Cd=0.4 from the h(x, t) data near the advancing front region, also confirmed by load cell measurements, is much reduced relative to its independently measured steady-uniform flow case. This finding suggests that drag reduction mechanisms associated with transients and flow disturbances are more likely to play a dominant role when compared to conventional sheltering or blocking effects on Cd examined in uniform flow. The increased air volume entrained into the advancing wave front region as determined from an inflow–outflow volume balance partly explains the Cd reduction from unity. 
    more » « less
  2. Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue. 
    more » « less
  3. Abstract. Conventional and recently developed approaches for estimating turbulent scalar fluxes under stable atmospheric conditions are evaluated, with a focus on gases for which fast sensors are not readily available. First, the relaxed eddy accumulation (REA) classical approach and a recently proposed mixing length parameterization, labeled A22, are tested against eddy-covariance computations. Using high-frequency measurements collected from two contrasting sites (the frozen tundra near Utqiaġvik, Alaska, and a sparsely vegetated grassland in Wendell, Idaho, during winter), it is shown that the REA and A22 models outperform the conventional Monin–Obukhov similarity theory (MOST) utilized widely to infer fluxes from mean gradients. Second, scenarios where slow trace gas sensors are the only viable option in field measurements are investigated using digital filtering applied to fast-response sensors to simulate their slow-response counterparts. With a filtered scalar signal, the observed filtered eddy-covariance fluxes are referred to here as large-eddy-covariance (LEC) fluxes. A virtual eddy accumulation (VEA) approach, akin to the REA model but not requiring a mechanical apparatus to separate the gas flows, is also formulated and tested. A22 outperforms VEA and LEC in predicting the observed unfiltered (total) eddy-covariance (EC) fluxes; however, VEA can still capture the LEC fluxes well. This finding motivates the introduction of a sensor response time correction into the VEA formulation to offset the effect of sensor filtering on the underestimated net averaged fluxes. The only needed parameter for this correction is the mean velocity at the instrument height, a surrogate of the advective timescale. The VEA approach is very suitable and simple to use with gas sensors of intermediate speed (∼ 0.5 to 1 Hz) and with conventional open- or closed-path setups. 
    more » « less
  4. Abstract Agrivoltaics (AV), conceived in the early 1980s, promise to ameliorate competition between solar energy generation and crop production for arable land. The premise behind AV is that excess light not used in photosynthesis can be used for energy production. There are opportunities for maximizing photosynthesis by targeting particular wavelengths (e.g., red) to be transmitted through semi‐transparent photovoltaic (PV) cells depending on crop type and environmental conditions. Camporese and Abou Najm (2022,https://doi.org/10.1029/2022EF002900) developed a numerical model that accommodates the various wavelengths of the incoming light spectrum to predict photosynthesis, stomatal conductance, and transpiration. This commentary seeks to place those and other recent findings about the modifications to the plant micro‐environment by PV cells in the context of maximum attainable aboveground biomass. 
    more » « less
  5. The intermittency of fog occurrence (the switching between fog and no-fog) is a key stochastic feature that plays a role in its duration and the amount of moisture available. Here, fog intermittency is studied by using the visibility time series collected during the month of July 2022 on Sable Island, Canada. In addition to the visibility, time series of air relative humidity and turbulent kinetic energy, putative variables akin to the formation and breakup conditions of fog, respectively, are also analyzed in the same framework to establish links between fog intermittency and the underlying atmospheric variables. Intermittency in the time series is quantified with their binary telegraph approximations to isolate clustering behavior from amplitude variations. It is shown that relative humidity and turbulent kinetic energy bound many stochastic features of visibility, including its spectral exponent, clustering exponent, and the growth of its block entropy slope. Although not diagnostic, the visibility time series displays features consistent with Pomeau–Manneville Type-III intermittency in its quiescent phase duration PDF scaling (−3/2), power spectrum scaling (−1/2), and signal amplitude PDF scaling (−2). The binary fog time series exhibits properties of self-organized criticality in the relation between its power spectrum scaling and quiescent phase duration distribution. 
    more » « less
  6. Abstract A persistent spatial organization of eddies is identified in the lowest portion of the stably stratified planetary boundary layer. The analysis uses flow realizations from published large-eddy simulations (Sullivan et al. in J Atmos Sci 73(4):1815–1840, 2016) ranging in stability from near-neutral to almost z-less stratification. The coherent turbulent structure is well approximated as a series of uniform momentum zones (UMZs) and uniform temperature zones (UTZs) separated by thin layers of intense gradients that are significantly greater than the mean. This pattern yields stairstep-like instantaneous flow profiles whose shape is distinct from the mean profiles that emerge from long-term averaging. However, the scaling of the stairstep organization is closely related to the resulting mean profiles. The differences in velocity and temperature across the thin gradient layers remain proportional to the surface momentum and heat flux conditions regardless of stratification. The vertical thickness of UMZs and UTZs is proportional to height above the surface for near-neutral and weak stratification, but becomes thinner and less dependent on height as the stability increases. Deviations from the logarithmic mean profiles for velocity and temperature observed under neutral conditions are therefore predominately due to the reduction in eddy size with increasing stratification, which is empirically captured by existing Monin–Obukhov similarity relations for momentum and heat. The zone properties are additionally used to explain trends in the turbulent Prandtl number, thus providing a connection between the eddy organization, mean profiles, and turbulent diffusivity in stably stratified conditions. 
    more » « less
  7. The inertial subrange of turbulent scales is commonly reflected by a power law signature in ensemble statistics such as the energy spectrum and structure functions – both in theory and from observations. Despite promising findings on the topic of fractal geometries in turbulence, there is no accepted image for the physical flow features corresponding to this statistical signature in the inertial subrange. The present study uses boundary layer turbulence measurements to evaluate the self-similar geometric properties of velocity isosurfaces and investigate their influence on statistics for the velocity signal. The fractal dimension of streamwise velocity isosurfaces, indicating statistical self-similarity in the size of ‘wrinkles’ along each isosurface, is shown to be constant only within the inertial subrange of scales. For the transition between the inertial subrange and production range, it is inferred that the largest wrinkles become increasingly confined by the overall size of large-scale coherent velocity regions such as uniform momentum zones. The self-similarity of isosurfaces yields power-law trends in subsequent one-dimensional statistics. For instance, the theoretical 2/3 power-law exponent for the structure function can be recovered by considering the collective behaviour of numerous isosurface level sets. The results suggest that the physical presence of inertial subrange eddies is manifested in the self-similar wrinkles of isosurfaces. 
    more » « less