skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Estimating scalar turbulent fluxes with slow-response sensors in the stable atmospheric boundary layer
Abstract. Conventional and recently developed approaches for estimating turbulent scalar fluxes under stable atmospheric conditions are evaluated, with a focus on gases for which fast sensors are not readily available. First, the relaxed eddy accumulation (REA) classical approach and a recently proposed mixing length parameterization, labeled A22, are tested against eddy-covariance computations. Using high-frequency measurements collected from two contrasting sites (the frozen tundra near Utqiaġvik, Alaska, and a sparsely vegetated grassland in Wendell, Idaho, during winter), it is shown that the REA and A22 models outperform the conventional Monin–Obukhov similarity theory (MOST) utilized widely to infer fluxes from mean gradients. Second, scenarios where slow trace gas sensors are the only viable option in field measurements are investigated using digital filtering applied to fast-response sensors to simulate their slow-response counterparts. With a filtered scalar signal, the observed filtered eddy-covariance fluxes are referred to here as large-eddy-covariance (LEC) fluxes. A virtual eddy accumulation (VEA) approach, akin to the REA model but not requiring a mechanical apparatus to separate the gas flows, is also formulated and tested. A22 outperforms VEA and LEC in predicting the observed unfiltered (total) eddy-covariance (EC) fluxes; however, VEA can still capture the LEC fluxes well. This finding motivates the introduction of a sensor response time correction into the VEA formulation to offset the effect of sensor filtering on the underestimated net averaged fluxes. The only needed parameter for this correction is the mean velocity at the instrument height, a surrogate of the advective timescale. The VEA approach is very suitable and simple to use with gas sensors of intermediate speed (∼ 0.5 to 1 Hz) and with conventional open- or closed-path setups.  more » « less
Award ID(s):
2128345 2028633
PAR ID:
10539590
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
European Geophysical Union
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
24
Issue:
16
ISSN:
1680-7324
Page Range / eLocation ID:
9697 to 9711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The relaxed eddy accumulation (REA) method is a widely‐known technique that measures turbulent fluxes of scalar quantities. The REA technique has been used to measure turbulent fluxes of various compounds, such as methane, ethene, propene, butene, isoprene, nitrous oxides, ozone, and others. The REA method requires the accumulation of scalar concentrations in two separate compartments that conditionally sample updrafts and downdraft events. It is demonstrated here that the assumptions behind the conventional or two‐compartment REA approach allow for one‐compartment sampling, therefore called a one compartment or 1‐C‐REA approach, thereby expanding its operational utility. The one‐compartment sampling method is tested across various land cover types and atmospheric stability conditions, and it is found that the one‐compartment REA can provide results comparable to those determined from conventional two‐compartment REA. This finding enables rapid expansion and practical utility of REA in studies of surface‐atmosphere exchanges, interactions, and feedbacks. 
    more » « less
  2. Abstract The Monin‐Obukhov Similarity Theory (MOST) links turbulent statistics to surface fluxes through universal functions. Here, we investigate its performance over a large lake, where none of its assumptions (flat homogeneous surface) are obviously violated. We probe the connection between the variance budget terms and departure from the nondimensional flux‐variance function for CO2, water vapor, and temperature. Our results indicate that both the variance storage and its vertical transport affect MOST, and these terms are most significant when small fluxes and near neutral conditions were prevalent. Such conditions are common over lakes and oceans, especially for CO2, underlining the limitation of using any MOST‐based methods to compute small fluxes. We further show that the relaxed eddy accumulation (REA) method is more robust and less sensitive to storage and transport, adequately reproducing the eddy‐covariance fluxes even for the smallest flux magnitudes. Therefore, we recommend REA over MOST methods for trace‐gas flux estimation. 
    more » « less
  3. Abstract. The aquatic eddy covariance technique stands out as a powerful method for benthic O2 flux measurements in shelf environments because itintegrates effects of naturally varying drivers of the flux such as current flow and light. In conventional eddy covariance instruments, the timeshift caused by spatial separation of the measuring locations of flow and O2 concentration can produce substantial flux errors that aredifficult to correct. We here introduce a triple O2 sensor eddy covariance instrument (3OEC) that by instrument design eliminates theseerrors. This is achieved by positioning three O2 sensors around the flow measuring volume, which allows the O2concentration to be calculated at the point of the current flow measurements. The new instrument was tested in an energetic coastal environment with highly permeablecoral reef sands colonised by microphytobenthos. Parallel deployments of the 3OEC and a conventional eddy covariance system (2OEC) demonstrate thatthe new instrument produces more consistent fluxes with lower error margin. 3OEC fluxes in general were lower than 2OEC fluxes, and the nighttimefluxes recorded by the two instruments were statistically different. We attribute this to the elimination of uncertainties associated with the timeshift correction. The deployments at ∼ 10 m water depth revealed high day- and nighttime O2 fluxes despite the relatively loworganic content of the coarse sediment and overlying water. High light utilisation efficiency of the microphytobenthos and bottom currents increasingpore water exchange facilitated the high benthic production and coupled respiration. 3OEC measurements after sunset documented a gradual transfer ofnegative flux signals from the small turbulence generated at the sediment–water interface to the larger wave-dominated eddies of the overlying watercolumn that still carried a positive flux signal, suggesting concurrent fluxes in opposite directions depending on eddy size and a memory effect oflarge eddies. The results demonstrate that the 3OEC can improve the precision of benthic flux measurements, including measurements in environmentsconsidered challenging for the eddy covariance technique, and thereby produce novel insights into the mechanisms that control flux. We consider thefluxes produced by this instrument for the permeable reef sands the most realistic achievable with present-day technology. 
    more » « less
  4. Abstract. The air–sea exchange of ozone (O3) is controlled by chemistry involving halogens, dissolved organic carbon, and sulfur in the sea surface microlayer. Calculations also indicate faster ozone photolysis at aqueous surfaces, but the role of clouds as an ozone sink is currently not well established. Fast-response ozone sensors offer opportunities to measure eddy covariance (EC) ozone fluxes in the marine boundary layer. However, intercomparisons of fast airborne O3 sensors and EC O3 fluxes measured on aircraft have not been conducted before. In April 2022, the Technological Innovation Into Iodine and GV Environmental Research (TI3GER) field campaign deployed three fast ozone sensors (gas chemiluminescence and a combination of UV absorption with coumarin chemiluminescence detection, CID) together with a fast water vapor sensor and anemometer to study iodine chemistry in the troposphere and stratosphere over Colorado and over the Pacific Ocean near Hawaii and Alaska. Here, we present an instrument comparison between the NCAR Fast O3 instrument (FO3, gas-phase CID) and two KIT Fast AIRborne Ozone instruments (FAIRO, UV absorption and coumarin CID). The sensors have comparable precision < 0.4 % Hz−0.5 (0.15 ppbv Hz−0.5), and ozone volume mixing ratios (VMRs) generally agreed within 2 % over a wide range of environmental conditions: 10 < O3 < 1000 ppbv, below detection < NOx < 7 ppbv, and 2 ppmv < H2O < 4 % VMR. Both instrument designs are demonstrated to be suitable for EC flux measurements and were able to detect O3 fluxes with exchange velocities (defined as positive for upward) as slow as −0.010 ± 0.004 cm s−1, which is in the lower range of previously reported measurements. Additionally, we present two case studies. In one, the direction of ozone and water vapor fluxes was reversed (vO3 = +0.134 ± 0.005 cm s−1), suggesting that overhead evaporating clouds could be a strong ozone sink. Further work is needed to better understand the role of clouds as a possibly widespread sink of ozone in the remote marine boundary layer. In the second case study, vO3 values are negative (varying by a factor of 6–10 from −0.036 ± 0.006 to −0.003 ± 0.004 cm s−1), while the water vapor fluxes are consistently positive due to evaporation from the ocean surface and spatially homogeneous. This case study demonstrates that the processes governing ozone and water vapor fluxes can become decoupled and illustrates the need to elucidate possible drivers (physical, chemical, or biological) of the variability in ozone exchange velocities on fine spatial scales (∼ 20 km) over remote oceans. 
    more » « less
  5. Abstract The aquatic eddy covariance technique is increasingly used to determine oxygen (O2) fluxes over benthic ecosystems. The technique uses O2measuring systems that have a high temporal and numerical resolution. In this study, we performed a series of lab and field tests to assess a new optical submersible O2meter designed for aquatic eddy covariance measurements and equipped with an existing ultra‐high speed optical fiber sensor. The meter has a 16‐bit digital‐to‐analog‐signal conversion that produces a 0–5 V output at a rate up to 40 Hz. The device was paired with an acoustic Doppler velocimeter. The combined meter and fiber‐optic O2sensor's response time was significantly faster in O2‐undersaturated water compared to in O2‐supersaturated water (0.087 vs. 0.12 s), but still sufficiently fast for aquatic eddy covariance measurements. The O2optode signal was not sensitive to variations in water flow or light exposure. However, the response time was affected by the direction of the flow. When the sensor tip was exposed to a flow from the back rather than the front, the response time increased by 37%. The meter's internal signal processing time was determined to be ~ 0.05 s, a delay that can be corrected for during postprocessing. In order for the built‐in temperature correction to be accurate, the meter should always be submerged with the fiber‐optic sensor. In multiple 21–47 h field tests, the system recorded consistently high‐quality, low‐noise O2flux data. Overall, the new meter is a powerful option for collecting robust aquatic eddy covariance data. 
    more » « less