Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
In this paper, Kirchenbauer et. al. use a novel watermarking technology to watermark the output of large language models (LLMs) like ChatGP, which is often in the form of AI-generated text, and mitigate the harms associated with the increasing usage of these technologies. They note some of the capabilities of these LLM models as writing documents, creating executable code, and answering questions, often with human-like capabilities. In addition, they list some of the harms as social engineering and election manipulation campaigns that exploit automated bots on social media platforms, creation of fake news and web content, and use of AI systems for cheating onacademic writing and coding assignments. As for implications for policy makers, this technology can be utilized as a means to regulate and oversee the use of these LLMs on all public and social fronts where their AI-generated text output could pose a potential harm, such as those listed by the authors. (Methods and Metrics, watermarking LLM output)more » « less
-
The tweakable Even-Mansour construction yields a tweakable block cipher from a public random permutation. We prove post-quantum security of tweakable Even-Mansour when attackers have quantum access to the random permutation but only classical access to the secretly-keyed construction, the relevant setting for most real-world applications. We then use our results to prove post-quantum security—in the same model—of the symmetric-key schemes Chaskey (an ISO-standardized MAC), Elephant (an AEAD finalist of NIST’s lightweight cryptography standardization effort), and a variant of Minalpher (an AEAD second-round candidate of the CAESAR competition).more » « less
-
Alistarh, Dan (Ed.){"Abstract":["The proof-of-stake (PoS) protocols aim to reduce the unnecessary computing power waste seen in Bitcoin. Various practical and provably secure designs have been proposed, like Ouroboros Praos (Eurocrypt 2018) and Snow White (FC 2019). However, the essential security property of unpredictability in these protocols remains insufficiently explored. This paper delves into this property in the cryptographic setting to achieve the "best possible" unpredictability for PoS.\r\nWe first present an impossibility result for all PoS protocols under the single-extension design framework, where each honest player extends one chain per round. The state-of-the-art permissionless PoS protocols (e.g., Praos, Snow White, and more), are all under this single-extension framework. Our impossibility result states that, if a single-extension PoS protocol achieves the best possible unpredictability, then this protocol cannot be proven secure unless more than 73% of stake is honest. To overcome this impossibility, we introduce a new design framework called multi-extension PoS, allowing each honest player to extend multiple chains using a greedy strategy in a round. This strategy allows us to construct a class of PoS protocols that achieve the best possible unpredictability. It is noteworthy that these protocols can be proven secure, assuming a much smaller fraction (e.g., 57%) of stake to be honest."]}more » « less
An official website of the United States government

Full Text Available