Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Land Use and Land Cover Changes (LULCC) are occurring rapidly around the globe, particularly in developing island nations. We use the lens of the United Nations’ Sustainable Development Goals (SDG) to determine potential policies to address LULCC due to increasing population, suburbia, and rubber plantations in Semarang, Indonesia between 2006 and 2015. Using remote sensing, overlay analysis, optimized hot spot analysis, expert validation, and Continuous Change Detection and Classification, we found that there was a spread of urban landscapes towards the southern and western portions of Semarang that had previously been occupied by forests, plantations, agriculture, and aquaculture. We also witnessed a transition in farming from agriculture to rubber plantations, a cash crop. The implications of this study show that these geospatial analyses and big data can be used to characterize the SDGs, the complex interplay of these goals, and potentially alleviate some of the conflicts between disparate SDGs. We recommend certain policies that can assist in preserving the terrestrial ecosystem of Semarang (SDG 15) while creating a sustainable city (SDG 11, SDG 9) and providing sufficient work for individuals (SDG 1) in a growing economy (SDG 8) while simultaneously maintaining a sufficient food supply (SDG 2).Free, publicly-accessible full text available July 1, 2023
-
Ojaveer, Henn (Ed.)Abstract Northern sand lance (Ammodytes dubius) and Atlantic herring (Clupea harengus) represent the dominant lipid-rich forage fish species throughout the Northeast US shelf and are critical prey for numerous top predators. However, unlike Atlantic herring, there is little research on sand lance or information about drivers of their abundance. We use intra-annual measurements of sand lance diet, growth, and condition to explain annual variability in sand lance abundance on the Northeast US Shelf. Our observations indicate that northern sand lance feed, grow, and accumulate lipids in the late winter through summer, predominantly consuming the copepod Calanus finmarchicus. Sand lance then cease feeding, utilize lipids, and begin gonad development in the fall. We show that the abundance of C. finmarchicus influences sand lance parental condition and recruitment. Atlantic herring can mute this effect through intra-guild predation. Hydrography further impacts sand lance abundance as increases in warm slope water decrease overwinter survival of reproductive adults. The predicted changes to these drivers indicate that sand lance will no longer be able to fill the role of lipid-rich forage during times of low Atlantic herring abundance—changing the Northeast US shelf forage fish complex by the end of the century.