- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Keeling, Patrick J (2)
-
Andersen-Ranberg, Johan (1)
-
Bonacolta, Anthony M (1)
-
Cho, Anna (1)
-
Cooney, Elizabeth C (1)
-
Grimes, Candace J (1)
-
Jinkerson, Robert E (1)
-
Ochoa-Fernandez, Rocio (1)
-
Poveda-Huertes, Daniel (1)
-
Trznadel, Morelia (1)
-
Vermeij, Mark_J A (1)
-
Weiler, Bradley A (1)
-
Xiang, Tingting (1)
-
del_Campo, Javier (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Corals (Cnidaria; Anthozoa) play critical roles as habitat-forming species with a wide range, from warm shallow-water tropical coral reefs to cold-water ecosystems. They also represent a complex ecosystem as intricate holobionts made up of microbes from all domains of the Tree of Life that can play significant roles in host health and fitness. The corallicolids are a clade of apicomplexans that infect a wide variety of anthozoans worldwide and can influence the thermal tolerance of habitat-forming corals. Despite their potentially important impacts on reef ecosystems, much of the basic biology and ecology of corallicolids remains unclear. Apicomplexans often have a closed life cycle, with minimal environmental exposure and sometimes multiple hosts. Corallicolids have only been documented in anthozoan hosts, with no known secondary/reservoir hosts or vectors. Here, we show that abundant corallicolid sequences are recovered from bearded fireworms (Hermodice carunculata) in tropical reef habitats off CuraƧao and that they are distinct from corallicolids infecting the corals on which the fireworms were feeding at the time of their collection. These data are consistent with a fireworm-specific corallicolid infection, not merely a byproduct of the worms feeding on infected corals. Furthermore, we suggest that H. carunculata is potentially a vector moving corallicolids among coral hosts through its feces. These findings not only expand our understanding of the ecological interactions within coral reef ecosystems but also highlight the potential role of host-associated parasites in shaping the resilience of reef habitats.more » « less
-
Jinkerson, Robert E; Poveda-Huertes, Daniel; Cooney, Elizabeth C; Cho, Anna; Ochoa-Fernandez, Rocio; Keeling, Patrick J; Xiang, Tingting; Andersen-Ranberg, Johan (, Current Biology)Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c. CHLCSs are proteins with chlorophyll a/b binding and 2-oxoglutarate-Fe(II) dioxygenase (2OGD) domains found in peridinin-containing dinoflagellates; other chlorophyll c-containing algae utilize enzymes with only the 2OGD domain or an unknown synthase to produce chlorophyll c. 2OGD-containing synthases across dinoflagellate, diatom, cryptophyte, and haptophyte lineages form a monophyletic group, 8 members of which were also shown to produce chlorophyll c. Chlorophyll c1 to c2 ratios in marine algae are dictated in part by chlorophyll c synthases. CHLCS heterologously expressed in planta results in the accumulation of chlorophyll c1 and c2, demonstrating a path to augment plant pigment composition with algal counterparts.more » « less
An official website of the United States government
