- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
D'Mello, Sidney K. (1)
-
D’Mello, Sidney K. (1)
-
Keirn, Zachary (1)
-
Keirn, Zachary A. (1)
-
Stewart, Angela E. (1)
-
Stewart, Angela E.B. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stewart, Angela E.B.; Keirn, Zachary A.; D'Mello, Sidney K. (, The 21st ACM International Conference on Multimodal Interaction)We model coordination and coregulation patterns in 33 triads engaged in collaboratively solving a challenging computer programming task for approximately 20 minutes. Our goal is to prospectively model speech rate (words/sec) – an important signal of turn taking and active participation – of one teammate (A or B or C) from time lagged nonverbal signals (speech rate and acoustic-prosodic features) of the other two (i.e., A + B → C; A + C → B; B + C → A) and task-related context features. We trained feed-forward neural networks (FFNNs) and long short- term memory recurrent neural networks (LSTMs) using group- level nested cross-validation. LSTMs outperformed FFNNs and a chance baseline and could predict speech rate up to 6s into the future. A multimodal combination of speech rate, acoustic- prosodic, and task context features outperformed unimodal and bimodal signals. The extent to which the models could predict an individual’s speech rate was positively related to that individual’s scores on a subsequent posttest, suggesting a link between coordination/coregulation and collaborative learning outcomes. We discuss applications of the models for real-time systems that monitor the collaborative process and intervene to promote positive collaborative outcomes.more » « less
An official website of the United States government
