skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multimodal Modeling of Coordination and Coregulation Patterns in Speech Rate during Triadic Collaborative Problem Solving
We model coordination and coregulation patterns in 33 triads engaged in collaboratively solving a challenging computer programming task for approximately 20 minutes. Our goal is to prospectively model speech rate (words/sec) – an important signal of turn taking and active participation – of one teammate (A or B or C) from time lagged nonverbal signals (speech rate and acoustic-prosodic features) of the other two (i.e., A + B → C; A + C → B; B + C → A) and task-related context features. We trained feed-forward neural networks (FFNNs) and long short- term memory recurrent neural networks (LSTMs) using group- level nested cross-validation. LSTMs outperformed FFNNs and a chance baseline and could predict speech rate up to 6s into the future. A multimodal combination of speech rate, acoustic- prosodic, and task context features outperformed unimodal and bimodal signals. The extent to which the models could predict an individual’s speech rate was positively related to that individual’s scores on a subsequent posttest, suggesting a link between coordination/coregulation and collaborative learning outcomes. We discuss applications of the models for real-time systems that monitor the collaborative process and intervene to promote positive collaborative outcomes.  more » « less
Award ID(s):
1745442
PAR ID:
10088201
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 21st ACM International Conference on Multimodal Interaction
Page Range / eLocation ID:
21 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Positive interpersonal relationships require shared understanding along with a sense of rapport. A key facet of rapport is mirroring and convergence of facial expression and body language, known as nonverbal synchrony. We examined nonverbal synchrony in a study of 29 heterosexual romantic couples, in which audio, video, and bracelet accelerometer were recorded during three conversations. We extracted facial expression, body movement, and acoustic-prosodic features to train neural network models that predicted the nonverbal behaviors of one partner from those of the other. Recurrent models (LSTMs) outperformed feed-forward neural networks and other chance baselines. The models learned behaviors encompassing facial responses, speech-related facial movements, and head movement. However, they did not capture fleeting or periodic behaviors, such as nodding, head turning, and hand gestures. Notably, a preliminary analysis of clinical measures showed greater association with our model outputs than correlation of raw signals. We discuss potential uses of these generative models as a research tool to complement current analytical methods along with real-world applications (e.g., as a tool in therapy). 
    more » « less
  2. Speech activity detection (SAD) is a key pre-processing step for a speech-based system. The performance of conventional audio-only SAD (A-SAD) systems is impaired by acoustic noise when they are used in practical applications. An alternative approach to address this problem is to include visual information, creating audiovisual speech activity detection (AV-SAD) solutions. In our previous work, we proposed to build an AV-SAD system using bimodal recurrent neural network (BRNN). This framework was able to capture the task-related characteristics in the audio and visual inputs, and model the temporal information within and across modalities. The approach relied on long short-term memory (LSTM). Although LSTM can model longer temporal dependencies with the cells, the effective memory of the units is limited to a few frames, since the recurrent connection only considers the previous frame. For SAD systems, it is important to model longer temporal dependencies to capture the semi-periodic nature of speech conveyed in acoustic and orofacial features. This study proposes to implement a BRNN-based AV-SAD system with advanced LSTMs (A-LSTMs), which overcomes this limitation by including multiple connections to frames in the past. The results show that the proposed framework can significantly outperform the BRNN system trained with the original LSTM layers. 
    more » « less
  3. Speech activity detection (SAD) is a key pre-processing step for a speech-based system. The performance of conventional audio-only SAD (A-SAD) systems is impaired by acoustic noise when they are used in practical applications. An alternative approach to address this problem is to include visual information, creating audiovisual speech activity detection (AV-SAD) solutions. In our previous work, we proposed to build an AV-SAD system using bimodal recurrent neural network (BRNN). This framework was able to capture the task-related characteristics in the audio and visual inputs, and model the temporal information within and across modalities. The approach relied on long short-term memory (LSTM). Although LSTM can model longer temporal dependencies with the cells, the effective memory of the units is limited to a few frames, since the recurrent connection only considers the previous frame. For SAD systems, it is important to model longer temporal dependencies to capture the semi-periodic nature of speech conveyed in acoustic and orofacial features. This study proposes to implement a BRNN-based AV-SAD system with advanced LSTMs (A-LSTMs), which overcomes this limitation by including multiple connections to frames in the past. The results show that the proposed framework can significantly outperform the BRNN system trained with the original LSTM layers. 
    more » « less
  4. Speech activity detection (SAD) is a key pre-processing step for a speech-based system. The performance of conventional audio-only SAD (A-SAD) systems is impaired by acoustic noise when they are used in practical applications. An alternative approach to address this problem is to include visual information, creating audiovisual speech activity detection (AV-SAD) solutions. In our previous work, we proposed to build an AV-SAD system using bimodal recurrent neural network (BRNN). This framework was able to capture the task-related characteristics in the audio and visual inputs, and model the temporal infor- mation within and across modalities. The approach relied on long short-term memory (LSTM). Although LSTM can model longer temporal dependencies with the cells, the effective mem- ory of the units is limited to a few frames, since the recur- rent connection only considers the previous frame. For SAD systems, it is important to model longer temporal dependencies to capture the semi-periodic nature of speech conveyed in acoustic and orofacial features. This study proposes to implement a BRNN-based AV-SAD system with advanced LSTMs (A-LSTMs), which overcomes this limitation by including mul- tiple connections to frames in the past. The results show that the proposed framework can significantly outperform the BRNN system trained with the original LSTM layers. 
    more » « less
  5. Abstract Speech processing often occurs amid competing inputs from other modalities, for example, listening to the radio while driving. We examined the extent to which dividing attention between auditory and visual modalities (bimodal divided attention) impacts neural processing of natural continuous speech from acoustic to linguistic levels of representation. We recorded electroencephalographic (EEG) responses when human participants performed a challenging primary visual task, imposing low or high cognitive load while listening to audiobook stories as a secondary task. The two dual-task conditions were contrasted with an auditory single-task condition in which participants attended to stories while ignoring visual stimuli. Behaviorally, the high load dual-task condition was associated with lower speech comprehension accuracy relative to the other two conditions. We fitted multivariate temporal response function encoding models to predict EEG responses from acoustic and linguistic speech features at different representation levels, including auditory spectrograms and information-theoretic models of sublexical-, word-form-, and sentence-level representations. Neural tracking of most acoustic and linguistic features remained unchanged with increasing dual-task load, despite unambiguous behavioral and neural evidence of the high load dual-task condition being more demanding. Compared to the auditory single-task condition, dual-task conditions selectively reduced neural tracking of only some acoustic and linguistic features, mainly at latencies >200 ms, while earlier latencies were surprisingly unaffected. These findings indicate that behavioral effects of bimodal divided attention on continuous speech processing occur not because of impaired early sensory representations but likely at later cognitive processing stages. Crossmodal attention-related mechanisms may not be uniform across different speech processing levels. 
    more » « less