skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kellerman, Anne M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The biogeochemistry of rapidly retreating Andean glaciers is poorly understood, and Ecuadorian glacier dissolved organic matter (DOM) composition is unknown. This study examined molecular composition and carbon isotopes of DOM from supraglacial and outflow streams (n = 5 and 14, respectively) across five ice capped volcanoes in Ecuador. Compositional metrics were paired with streamwater isotope analyses (δ18O) to assess if outflow DOM composition was associated with regional precipitation gradients and thus an atmospheric origin of glacier DOM. Ecuadorian glacier outflows exported ancient, biolabile dissolved organic carbon (DOC), and DOM contained a high relative abundance (RA) of aliphatic and peptide‐like compounds (≥27%RA). Outflows were consistently more depleted in Δ14C‐DOC (i.e., older) compared to supraglacial streams (mean −195.2 and −61.3‰ respectively), perhaps due to integration of spatially heterogenous and variably aged DOM pools across the supraglacial environment, or incorporation of aged subglacial OM as runoff was routed to the outflow. Across Ecuador, Δ14C‐DOC enrichment was associated with decreased aromaticity of DOM, due to increased contributions of organic matter (OM) from microbial processes or atmospheric deposition of recently fixed and subsequently degraded OM (e.g., biomass burning byproducts). There was a regional gradient between glacier outflow DOM composition and streamwater δ18O, suggesting covariation between regional precipitation gradients and the DOM exported from glacier outflows. Ultimately, this highlights that atmospheric deposition may exert a control on glacier outflow DOM composition, suggesting regional air circulation patterns and precipitation sources in part determine the origins and quality of OM exported from glacier environments. 
    more » « less
  2. Arctic landscapes are warming and becoming wetter due to changes in precipitation and the timing of snowmelt which consequently alters seasonal runoff and river discharge patterns. These changes in hydrology lead to increased mobilization and transport of terrestrial dissolved organic matter (DOM) to Arctic coastal seas where significant impacts on biogeochemical cycling can occur. Here, we present measurements of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) in the Yukon River-to-Bering Sea system and two river plumes on the Alaska North Slope which flow into the Beaufort Sea. Our sampling characterized optical and biogeochemical properties of DOM during high and low river discharge periods for the Yukon River-Bering Sea system. The average DOC concentration at the multiple Yukon River mouths ranged from a high of 10.36 mg C L -1 during the ascending limb of the 2019 freshet (late May), 6.4 mg C L -1 during the descending limb of the 2019 freshet (late June), and a low of 3.86 mg C L -1 during low river discharge in August 2018. CDOM absorption coefficient at 412 nm ( a CDOM (412)) averaged 8.23 m -1 , 5.07 m -1 , and 1.9 m -1 , respectively. Several approaches to model DOC concentration based on its relationship with CDOM properties demonstrated cross-system seasonal and spatial robustness for these Arctic coastal systems despite spanning an order of magnitude decrease in DOC concentration from the lower Yukon River to the Northern Bering Sea as well as the North Slope systems. “Snapshot” fluxes of DOC and CDOM across the Yukon River Delta to Norton Sound were calculated from our measurements and modeled water fluxes forced with upstream USGS river gauge data. Our findings suggest that during high river flow, DOM reaches the delta largely unaltered by inputs or physical and biogeochemical processing and that the transformations of Yukon River DOM largely occur in the plume. However, during low summer discharge, multiple processes including local precipitation events, microbial decomposition, photochemistry, and likely others can alter the DOM properties within the lower Yukon River and Delta prior to flowing into Norton Sound. 
    more » « less
  3. Abstract West Siberia contains some of the largest soil carbon stores on Earth owing to vast areas of peatlands and permafrost, with the region warming far faster than the global average. Organic matter transported in fluvial systems is likely to undergo distinct compositional changes as peatlands and permafrost warm. However, the influence of peatlands and permafrost on future dissolved organic matter (DOM) composition is not well characterized. To better understand how these environmental drivers may impact DOM composition in warming Arctic rivers, we used ultrahigh resolution Fourier‐transform ion cyclotron resonance mass spectrometry to analyze riverine DOM composition across a latitudinal gradient of West Siberia spanning both permafrost‐influenced and permafrost‐free watersheds and varying proportions of peatland cover. We find that peatland cover explains much of the variance in DOM composition in permafrost‐free watersheds in West Siberia, but this effect is suppressed in permafrost‐influenced watersheds. DOM from warm permafrost‐free watersheds was more heterogenous, higher molecular weight, and relatively nitrogen enriched in comparison to DOM from cold permafrost‐influenced watersheds, which were relatively enriched in energy‐rich peptide‐like and aliphatic compounds. Therefore, we predict that as these watersheds warm, West Siberian rivers will export more heterogeneous DOM with higher average molecular weight than at present. Such compositional shifts have been linked to different fates of DOM in downstream ecosystems. For example, a shift toward higher molecular weight, less energy‐rich DOM may lead to a change in the fate of this material, making it more susceptible to photochemical degradation processes, particularly in the receiving Arctic Ocean. 
    more » « less
  4. Abstract The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km −2 year −1 ) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km −2 year −1 ). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year −1 ), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year −1 ). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming. 
    more » « less
  5. Abstract Dissolved organic matter (DOM) in glacier runoff is aliphatic‐rich, yet studies have proposed that DOM originates mainly from allochthonous, aromatic, and often aged material. Allochthonous organic matter (OM) is exposed to ultraviolet radiation both in atmospheric transport and post‐deposition on the glacier surface. Thus, we evaluate photochemistry as a mechanism to account for the compositional disconnect between allochthonous OM sources and glacier runoff DOM composition. Six endmember OM sources (including soils and diesel particulate matter) were leached and photo‐irradiated for 28 days in a solar simulator, until >90% of initial chromophoric DOM was removed. Ultrahigh‐resolution mass spectrometry was used to compare the molecular composition of endmember leachates pre‐ and post‐irradiation to DOM in supraglacial and bulk runoff from the Greenland Ice Sheet and Juneau Icefield (Alaska), respectively. Photo‐irradiation drove molecular level convergence between the initially aromatic‐rich leachates and aromatic‐poor glacial samples, selectively removing aromatic compounds (−80 ± 19% relative abundance) and producing aliphatics (+75 ± 35% relative abundance). Molecular level glacier runoff DOM composition was statistically indistinguishable to post‐irradiation leachates. Bray‐Curtis analysis showed substantial similarity in the molecular formulae present between glacier samples and post‐irradiation leachates. Post‐irradiation leachates contained 84 ± 7.4% of the molecular formulae, including 72 ± 17% of the aliphatic formulae, detected in glacier samples. Our findings suggest that photodegradation, either in transit to or on glacier surfaces, could provide a mechanistic pathway to account for the disconnect between proposed aromatic, aged sources of OM and the aliphatic‐rich fingerprint of glacial DOM. 
    more » « less