Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree speciesPopulus fremontiiwere studied in a controlled common garden during a record summer heatwave—where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.more » « less
-
Muller, Bertrand (Ed.)Abstract Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops’ nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.more » « less
-
Martinez-Vilalta, Jordi (Ed.)Abstract Species interactions mediate tree responses to water limitation because competition and/or facilitation alter plant physiology and growth. However, because it is difficult to isolate the effects of plant–plant interactions and water limitation from other environmental factors, the mechanisms underlying tree physiology and growth in coexisting plants under drought are poorly understood. We investigated how species interactions and water limitation impact the physiology and growth of trembling aspen (Populus tremuloides), narrowleaf cottonwood (Populus angustifolia) and ponderosa pine (Pinus ponderosa) seedlings in a controlled environment growth chamber, using aspen as a focal species. Seedlings were grown in pots alone or with a con- or hetero-specific seedling, and were subjected to a water limitation treatment. Growth, water status and physiological traits were measured before, during and after the treatment. Under well-watered conditions, the presence of another seedling affected growth or biomass allocation in all species, but did not impact the physiological traits we measured. Under water limitation, the presence of a competing seedling had a marginal impact on seedling growth and physiological traits in all species. Throughout the study, the magnitude and direction of seedling responses were complex and often species-specific. Our study serves as an important step toward testing how species’ interactions modify physiological responses and growth in well-watered and water-limited periods.more » « less
-
Abstract Drought‐induced tree mortality is projected to increase due to climate change, which will have manifold ecological and societal impacts including the potential to weaken or reverse the terrestrial carbon sink. Predictions of tree mortality remain limited, in large part because within‐species variations in ecophysiology due to plasticity or adaptation and ecosystem adjustments could buffer mortality in dry locations. Here, we conduct a meta‐analysis of 50 studies spanning >100 woody plant species globally to quantify how populations within species vary in vulnerability to drought mortality and whether functional traits or climate mediate mortality patterns. We find that mortality predominantly occurs in drier populations and this pattern is more pronounced in species with xylem that can tolerate highly negative water potentials, typically considered to be an adaptive trait for dry regions, and species that experience higher variability in water stress. Our results indicate that climate stress has exceeded physiological and ecosystem‐level tolerance or compensating mechanisms by triggering extensive mortality at dry range edges and provides a foundation for future mortality projections in empirical distribution and mechanistic vegetation models.more » « less
An official website of the United States government
