skip to main content

Search for: All records

Creators/Authors contains: "Kessler, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Doglioni, C. ; Kim, D. ; Stewart, G.A. ; Silvestris, L. ; Jackson, P. ; Kamleh, W. (Ed.)
    The DESGW group seeks to identify electromagnetic counterparts of gravitational wave events seen by the LIGO-VIRGO network, such as those expected from binary neutron star mergers or neutron star-black hole mergers. DESGW was active throughout the first two LIGO observing seasons, following up several binary black hole mergers and the first binary neutron star merger, GW170817. This work describes the modifications to the observing strategy generation and image processing pipeline between the second (ending in August 2017) and third (beginning in April 2019) LIGO observing seasons. The modifications include a more robust observing strategy generator, further parallelization of the imagemore »reduction software and difference imaging processing pipeline, data transfer streamlining, and a web page listing identified counterpart candidates that updates in real time. Taken together, the additional parallelization steps enable the identification of potential electromagnetic counterparts within fully calibrated search images in less than one hour, compared to the 3-5 hours it would typically take during the first two seasons. These performance improvements are critical to the entire EM follow-up community, as rapid identification (or rejection) of candidates enables detailed and rapid spectroscopic follow-up by multiple instruments, leading to more information about the environment immediately following such gravitational wave events.« less
  2. Abstract Binary supermassive black holes (BSBHs) are expected to be a generic byproduct from hierarchical galaxy formation. The final coalescence of BSBHs is thought to be the loudest gravitational wave (GW) siren, yet no confirmed BSBH is known in the GW-dominated regime. While periodic quasars have been proposed as BSBH candidates, the physical origin of the periodicity has been largely uncertain. Here we report discovery of a periodicity (P=1607±7 days) at 99.95% significance (with a global p-value of ∼10−3 accounting for the look elsewhere effect) in the optical light curves of a redshift 1.53 quasar, SDSS J025214.67−002813.7. Combining archival Sloan Digital Skymore »Survey data with new, sensitive imaging from the Dark Energy Survey, the total ∼20-yr time baseline spans ∼4.6 cycles of the observed 4.4-yr (restframe 1.7-yr) periodicity. The light curves are best fit by a bursty model predicted by hydrodynamic simulations of circumbinary accretion disks. The periodicity is likely caused by accretion rate modulation by a milli-parsec BSBH emitting GWs, dynamically coupled to the circumbinary accretion disk. A bursty hydrodynamic variability model is statistically preferred over a smooth, sinusoidal model expected from relativistic Doppler boost, a kinematic effect proposed for PG1302−102. Furthermore, the frequency dependence of the variability amplitudes disfavors Doppler boost, lending independent support to the circumbinary accretion variability hypothesis. Given our detection rate of one BSBH candidate from circumbinary accretion variability out of 625 quasars, it suggests that future large, sensitive synoptic surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time may be able to detect hundreds to thousands of candidate BSBHs from circumbinary accretion with direct implications for Laser Interferometer Space Antenna.« less