Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In some organisms, the replication of G-quadruplex (G4) structures is supported by the Rev1 DNA polymerase. We previously showed that residues in the insert-2 motif of human Rev1 (hRev1) increased the affinity of the enzyme for G4 DNA and mediated suppression of mutagenic replication near G4 motifs. We have now investigated the conservation of G4-selective properties in Rev1 from other species. We compared Rev1 from Danio rerio (zRev1), Saccharomyces cerevisiae (yRev1), and Leishmania donovani (lRev1) with hRev1, including an insert-2 mutant form of hRev1 (E466A/Y470A or EY). We found that zRev1 retained all of the G4-selective prowess of the human enzyme, but there was a marked attenuation of G4 binding affinity for the EY hRev1 mutant and the two Rev1 proteins lacking insert-2 (yRev1 and lRev1). Perhaps most strikingly, we found that insert-2 was important for disruption of the G4 structure and optimal stimulation of processive DNA synthesis across the guanine-rich motif by DNA polymerase kappa (pol κ). Our findings have implications for how Rev1 might contribute to G4 replication in different species spanning the evolutionary tree – signaling the importance of selection for enzymes with robust G4-selective properties in organisms where these non-B DNA structures may fulfill taxa-specific physiological functions.more » « less
-
null (Ed.)Abstract Expression of tryptophan 2,3-dioxygenase (TDO) is a determinant of malignancy in gliomas through kynurenine (KYN) signaling. We report that inhibition of TDO activity attenuated recovery from replication stress and increased the genotoxic effects of bis-chloroethylnitrosourea (BCNU). Activation of the Chk1 arm of the replication stress response (RSR) was reduced when TDO activity was blocked prior to BCNU treatment, whereas phosphorylation of serine 33 (pS33) on replication protein A (RPA) was enhanced—indicative of increased fork collapse. Analysis of quantitative proteomic results revealed that TDO inhibition reduced nuclear 53BP1 and sirtuin levels. We confirmed that cells lacking TDO activity exhibited elevated gamma-H2AX signal and defective recruitment of 53BP1 to chromatin following BCNU treatment, which corresponded with delayed repair of DNA breaks. Addition of exogenous KYN increased the rate of break repair. TDO inhibition diminished SIRT7 deacetylase recruitment to chromatin, which increased histone H3K18 acetylation—a key mark involved in preventing 53BP1 recruitment to sites of DNA damage. TDO inhibition also sensitized cells to ionizing radiation (IR)-induced damage, but this effect did not involve altered 53BP1 recruitment. These experiments support a model where TDO-mediated KYN signaling helps fuel a robust response to replication stress and DNA damage.more » « less
-
null (Ed.)Abstract We previously reported that human Rev1 (hRev1) bound to a parallel-stranded G-quadruplex (G4) from the c-MYC promoter with high affinity. We have extended those results to include other G4 motifs, finding that hRev1 exhibited stronger affinity for parallel-stranded G4 than either anti-parallel or hybrid folds. Amino acids in the αE helix of insert-2 were identified as being important for G4 binding. Mutating E466 and Y470 to alanine selectively perturbed G4 binding affinity. The E466K mutant restored wild-type G4 binding properties. Using a forward mutagenesis assay, we discovered that loss of hRev1 increased G4 mutation frequency >200-fold compared to the control sequence. Base substitutions and deletions occurred around and within the G4 motif. Pyridostatin (PDS) exacerbated this effect, as the mutation frequency increased >700-fold over control and deletions upstream of the G4 site more than doubled. Mutagenic replication of G4 DNA (±PDS) was partially rescued by wild-type and E466K hRev1. The E466A or Y470A mutants failed to suppress the PDS-induced increase in G4 mutation frequency. These findings have implications for the role of insert-2, a motif conserved in vertebrates but not yeast or plants, in Rev1-mediated suppression of mutagenesis during G4 replication.more » « less
An official website of the United States government
