Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract In this paper, we focus on a discrete physical model describing granular crystals, whose equations of motion can be described by a system of differential difference equations. After revisiting earlier continuum approximations, we propose a regularized continuum model variant to approximate the discrete granular crystal model through a suitable partial differential equation. We then compute, both analytically and numerically, its travelling wave and periodic travelling wave solutions, in addition to its conservation laws. Next, using the periodic solutions, we describe quantitatively various features of the dispersive shock wave (DSW) by applying Whitham modulation theory and the DSW fitting method. Finally, we perform several sets of systematic numerical simulations to compare the corresponding DSW results with the theoretical predictions and illustrate that the continuum model provides a good approximation of the underlying discrete one.more » « lessFree, publicly-accessible full text available January 1, 2026
-
In the present work, we explored the dynamics of single kinks, kink–anti-kink pairs and bound states in the prototypical fractional Klein–Gordon example of the sine-Gordon equation. In particular, we modified the order β of the temporal derivative to that of a Caputo fractional type and found that, for 1<β<2, this imposes a dissipative dynamical behavior on the coherent structures. We also examined the variation of a fractional Riesz order α on the spatial derivative. Here, depending on whether this order was below or above the harmonic value α=2, we found, respectively, monotonically attracting kinks, or non-monotonic and potentially attracting or repelling kinks, with a saddle equilibrium separating the two. Finally, we also explored the interplay of the two derivatives, when both Caputo temporal and Riesz spatial derivatives are involved.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract In the seminal work (Weinstein 1999Nonlinearity12673), Weinstein considered the question of the ground states for discrete Schrödinger equations with power law nonlinearities, posed on . More specifically, he constructed the so-called normalised waves, by minimising the Hamiltonian functional, for fixed powerP(i.e.l2mass). This type of variational method allows one to claim, in a straightforward manner, set stability for such waves. In this work, we revisit these questions and build upon Weinstein’s work, as well as the innovative variational methods introduced for this problem in (Laedkeet al1994Phys. Rev. Lett.731055 and Laedkeet al1996Phys. Rev.E544299) in several directions. First, for the normalised waves, we show that they are in fact spectrally stable as solutions of the corresponding discrete nonlinear Schroedinger equation (NLS) evolution equation. Next, we construct the so-called homogeneous waves, by using a different constrained optimisation problem. Importantly, this construction works for all values of the parameters, e.g.l2supercritical problems. We establish a rigorous criterion for stability, which decides the stability on the homogeneous waves, based on the classical Grillakis–Shatah–Strauss/Vakhitov–Kolokolov (GSS/VK) quantity . In addition, we provide some symmetry results for the solitons. Finally, we complement our results with numerical computations, which showcase the full agreement between the conclusion from the GSS/VK criterion vis-á-vis with the linearised problem. In particular, one observes that it is possible for the stability of the wave to change as the spectral parameterωvaries, in contrast with the corresponding continuous NLS model.more » « less
An official website of the United States government
