skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khan, Hayat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Photothermal reagents sensitive to near‐infrared (NIR) light are promising imaging agents and therapeutics for anticancer applications because of the deep tissue penetration of NIR light, allowing for spatiotemporal control over the therapeutic activity, with minimal damage to normal tissues. Herein, a new class of NIR‐sensitive biopolymer‐based nanoparticles is presented by covalently conjugating indocyanine green (ICG) onto the surface of naturally occurring glycogen nanoparticles. The resulting ICG‐glycogen conjugates exhibit a markedly enhanced aqueous stability in comparison to free ICG molecules. Furthermore, an efficient light‐to‐heat conversion is enabled by ICG‐glycogen conjugates, as evidenced by the elevated temperatures of their aqueous solutions upon exposure to NIR light. Critically, ICG‐glycogen conjugates are capable of cell internalization, and under NIR irradiation the effective eradication of breast cancer cells, demonstrating their potential in photothermal therapy for cancer. 
    more » « less