Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Climate field reconstruction (CFR) refers to the estimation of spatiotemporal climate fields (such as surface temperature) from a collection of pointwise paleoclimate proxy datasets. Such reconstructions can provide rich information on climate dynamics and provide an out-of-sample validation of climate models. However, most CFR workflows are complex and time-consuming, as they involve (i) preprocessing of the proxy records, climate model simulations, and instrumental observations; (ii) application of one or more statistical methods; and (iii) analysis and visualization of the reconstruction results. Historically, this process has lacked transparency and accessibility, limiting reproducibility and experimentation by non-specialists. This article presents an open-source and object-oriented Python package called cfr that aims to make CFR workflows easy to understand and conduct, saving climatologists from technical details and facilitating efficient and reproducible research. cfr provides user-friendly utilities for common CFR tasks such as proxy and climate data analysis and visualization, proxy system modeling, and modularized workflows for multiple reconstruction methods, enabling methodological intercomparisons within the same framework. The package is supported with extensive documentation of the application programming interface (API) and a growing number of tutorial notebooks illustrating its usage. As an example, we present two cfr-driven reconstruction experiments using the PAGES 2k temperature database applying the last millennium reanalysis (LMR) paleoclimate data assimilation (PDA) framework and the graphical expectation–maximization (GraphEM) algorithm, respectively.more » « lessFree, publicly-accessible full text available April 30, 2025
-
Abstract Studying past climate variability is fundamental to our understanding of current changes. In the era of Big Data, the value of paleoclimate information critically depends on our ability to analyze large volume of data, which itself hinges on standardization. Standardization also ensures that these datasets are more Findable, Accessible, Interoperable, and Reusable. Building upon efforts from the paleoclimate community to standardize the format, terminology, and reporting of paleoclimate data, this article describes PaleoRec, a recommender system for the annotation of such datasets. The goal is to assist scientists in the annotation task by reducing and ranking relevant entries in a drop-down menu. Scientists can either choose the best option for their metadata or enter the appropriate information manually. PaleoRec aims to reduce the time to science while ensuring adherence to community standards. PaleoRec is a type of sequential recommender system based on a recurrent neural network that takes into consideration the short-term interest of a user in a particular dataset. The model was developed using 1996 expert-annotated datasets, resulting in 6,512 sequences. The performance of the algorithm, as measured by the Hit Ratio, varies between 0.7 and 1.0. PaleoRec is currently deployed on a web interface used for the annotation of paleoclimate datasets using emerging community standards.more » « less