skip to main content

Search for: All records

Creators/Authors contains: "Khizroev, Sakhrat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Almost 1000 million people have recently been diagnosed with a mental health or substance disorder (Ritchie & Roser, 2018). Psychiatric disorders, and their treatment, represent a big burden to the society worldwide, causing about 8 million deaths per year (Walker et al., 2015). Daily progress in science enables continuous advances in methods to treat patients; however, the brain remains to be the most unknown and complex organ of the body. There is a growing demand for innovative approaches to treat psychiatric as well as neurodegenerative disorders, disorders with unknown curability, and treatments mostly designed to slow disease progression. Based on that need and the peculiarity of the central nervous system, in the present review, we highlight the handicaps of the existing approaches as well as discuss the potential of the recently introduced magnetoelectric nanoparticles (MENPs) to become a game‐changing tool in future applications for the treatment of brain alterations. Unlike other stimulation approaches, MENPs have the potential to enable a wirelessly controlled stimulation at a single‐neuron level without requiring genetic modification of the neural tissue and no toxicity has yet been reported. Their potential as a new tool for targeting the brain is discussed.

    This article is categorized under:

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease

    Therapeutic Approaches and Drug Discovery > Neurological Disease

    more » « less
  2. Magnetoelectric coefficient values of above 5 and 2 V cm–1 Oe–1 in 20 nm CoFe2O4–BaTiO3 and NiFe2O4–BaTiO3 core–shell magnetoelectric nanoparticles were demonstrated. These colossal values, compared to 0.1 V cm–1 Oe–1 commonly reported for the 0–3 system, are attributed to (i) the heterostructural lattice-matched interface between the magnetostrictive core and the piezoelectric shell, confirmed through transmission electron microscopy, and (ii) in situ scanning tunneling microscopy nanoprobe-based ME characterization. The nanoprobe technique allows measurements of the ME effect at a single-nanoparticle level which avoids the charge leakage problem of traditional powder form measurements. The difference in the frequency dependence of the ME value between the two material systems is owed to the Ni-ferrite cores becoming superparamagnetic in the near-dc frequency range. The availability of novel nanostructures with colossal ME values promises to unlock many new applications ranging from energy-efficient information processing to nanomedicine and brain–machine interfaces. 
    more » « less
  3. New types of functional material structures will emerge if the shape and properties are controlled in three-dimensional nanodevices. Possible applications of these would be nanoelectronics and medical systems. Magnetic nanoparticles (MNPs) are especially important in electronics such as magnetic storage, sensors, and spintronics. Also, in those that are used as magnetic resonance imaging contrasts, and tissue specific therapeutic agents, as well as in the labeling and sorting of cells, drug delivery, separation of biochemical products, and in other medical applications. Most of these applications require MNPs to be chemically stable, uniform in size, and controllable in terms of their magnetic properties and shape. In this paper three new functions of iron (Fe)-based nanoparticles are reported: shape transformation, oxidation prevention, and self-alignment. The shape of the Fe nanoparticles could be controlled by changing their oxidation states and properties by using a nanocarbon coating. Full field X-ray microscopy using synchrotron radiation revealed controllable magnetic properties of MNPs at the L 3 edge which depended on the oxidation states. Then, inkjet printing was successfully performed to deposit a uniform layer of MNPs by the size. 
    more » « less
  4. Abstract

    Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two‐way interface between man‐made devices and physiological systems at the molecular level. With the recent development of room‐temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real‐time, targeted delivery across the blood–brain barrier (BBB), tissue regeneration, high‐specificity cancer cures, molecular‐level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High‐specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs‐based high‐specificity targeted drug delivery via application of d.c. and a.c. magnetic fields.

    This article is categorized under:

    Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease

    Therapeutic Approaches and Drug Discovery > Emerging Technologies

    more » « less
    more » « less