Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Plant homeodomain leucine zipper IV (HD‐Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)‐related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear.Here we used tandem affinity purification fromArabidopsiscell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START‐dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding.We additionally found that PDF2 acts as a transcriptional regulator of phospholipid‐ and phosphate (Pi) starvation‐related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered inpdf2mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity.We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.more » « less
-
Karrikin (KAR) molecules found in smoke stimulate seed germination of many plant species that emerge after fire. Genetic studies in Arabidopsis thaliana have identified core components of the KAR signaling pathway, including an α/β-hydrolase, KARRIKIN INSENSITIVE2 (KAI2), that is required for KAR responses. Although KAI2 is often considered a KAR receptor, recent evidence suggests that KARs may require metabolism to become bioactive signals. In addition to sensing KARs or a KAR-derived signal, KAI2 is thought to recognize an unknown endogenous signal, KAI2 ligand (KL). We generated loss-of-function mutations in KARRIKIN-UP-REGULATED F-BOX1 ( KUF1 ), which is a transcriptional marker of KAR/KL signaling in A. thaliana and other plants. The kuf1 mutant in Arabidopsis shows several phenotypes that are consistent with enhanced activity of the KAI2 pathway, including reduced hypocotyl elongation, enhanced cotyledon expansion in light-grown seedlings, increased root hair density and elongation, and differential expression of KAR/KL-responsive transcriptional markers. Seedling phenotypes of kuf1 are dependent on KAI2 and its signaling partner MORE AXILLARY GROWTH2 (MAX2). Furthermore, kuf1 mutants are hypersensitive to KAR 1 , but not to other molecules that can signal through KAI2 such as GR24. This implies that kuf1 does not increase the overall responsiveness of the KAI2-dependent signaling pathway, but specifically affects the ability of KAI2 to detect certain signals. We hypothesize that KUF1 imposes feedback inhibition of KL biosynthesis and KAR 1 metabolism. As an F-box protein, KUF1 likely participates in an E3 ubiquitin ligase complex that imposes this regulation through polyubiquitylation of a protein target(s).more » « less
-
Abstract DWARF14 (D14) is an ɑ/β‐hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)‐type proteins in the SUPPRESSOR OF MAX2 1‐LIKE (SMXL) family. We used CRISPR‐Cas9 to generate knockout alleles of the two homoeologousD14genes in theNicotiana benthamianagenome. TheNbd14a,bdouble mutant had several phenotypes that are consistent with the loss of SL perception in other plants, including increased axillary bud outgrowth, reduced height, shortened petioles, and smaller leaves. A ratiometric fluorescent reporter system was used to monitor degradation of SMXL7 fromArabidopsis thaliana(AtSMXL7) after transient expression inN. benthamianaand treatment with the strigolactone analog GR24. AtSMXL7 was degraded after treatment with GR245DS, which has the stereochemical configuration of natural SLs, as well as its enantiomer GR24ent‐5DS. InNbd14a,bleaves, AtSMXL7 abundance was unaffected byrac‐GR24 or either GR24 stereoisomer. Transient coexpression of AtD14 with the AtSMXL7 reporter inNbd14a,brestored the degradation response torac‐GR24, but required an active catalytic triad. We used this platform to evaluate the ability of several AtD14 mutants that had not been characterized in plants to target AtSMXL7 for degradation.more » « less
-
Summary Strigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived by the α/β‐hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant‐derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity. By contrast, karrikins are abiotic in origin, and the butenolide methyl group is nonessential. KAI2 is probably a receptor for an endogenous butenolide, but the identity of this compound remains unknown.Here we characterise the specificity of KAI2 towards differing butenolide ligands using genetic and biochemical approaches.We find that KAI2 proteins from multiple species are most sensitive to desmethyl butenolides that lack a methyl group. Desmethyl‐GR24 and desmethyl‐CN‐debranone are active by KAI2 but not D14. They are more potent KAI2 agonists compared with their methyl‐substituted reference compounds bothin vitroand in plants. The preference of KAI2 for desmethyl butenolides is conserved inSelaginella moellendorffiiandMarchantia polymorpha, suggesting that it is an ancient trait in land plant evolution.Our findings provide insight into the mechanistic basis for differential ligand perception by KAI2 and D14, and support the view that the endogenous substrates for KAI2 and D14 have distinct chemical structures and biosynthetic origins.more » « less
An official website of the United States government
