RR Lyrae stars play a central role in tracing phase-space structures within the Milky Way because they are easy to identify, are relatively luminous, and are found in large numbers in the Galactic bulge, disc, and halo. In this work, we present a new set of spectroscopic metallicity calibrations that use the equivalent widths of the Ca ii K and Balmer H γ and H δ lines to calculate metallicity values from low-resolution spectra. This builds on an earlier calibration from Layden by extending the range of equivalent widths which map between Ca ii K and the Balmer lines. We have developed the software rrlfe to apply this calibration to spectra in a consistent, reproducible, and extensible manner. This software is open-source and available to the community. The calibration can be updated with additional data sets in the future.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT We report the discovery and validation of HD 21520 b, a transiting planet found with Transiting Exoplanet Survey Satellite and orbiting a bright G dwarf (V = 9.2, $T_{\rm eff} = 5871 \pm 62$ K, $R_{\star } = 1.04\pm 0.02\, {\rm R}_{\odot }$). HD 21520 b was originally alerted as a system (TOI-4320) consisting of two planet candidates with periods of 703.6 and 46.4 d. However, our analysis supports instead a single-planet system with an orbital period of $25.1292\pm 0.0001$ d and radius of $2.70 \pm 0.09\, {\rm R}_{{\oplus }}$. Three full transits in sectors 4, 30, and 31 match this period and have transit depths and durations in agreement with each other, as does a partial transit in sector 3. We also observe transits using CHEOPS and LCOGT. SOAR and Gemini high-resolution imaging do not indicate the presence of any nearby companions, and Minerva-Australis and CORALIE radial velocities rule out an on-target spectroscopic binary. Additionally, we use ESPRESSO radial velocities to obtain a tentative mass measurement of $7.9^{+3.2}_{-3.0}\, {\rm M}_{{\oplus }}$, with a 3$\sigma$ upper limit of 17.7 ${\rm M}_{{\oplus }}$. Due to the bright nature of its host and likely significant gas envelope of the planet, HD 21520b is a promising candidate for further mass measurements and for atmospheric characterization.
-
Abstract We present the discovery of TOI-1994b, a low-mass brown dwarf transiting a hot subgiant star on a moderately eccentric orbit. TOI-1994 has an effective temperature of
K, V magnitude of 10.51 mag and log(g ) of . The brown dwarf has a mass ofM J, a period of 4.034 days, an eccentricity of , and a radius ofR J. TOI-1994b is more eccentric than other transiting brown dwarfs with similar masses and periods. The population of low-mass brown dwarfs may have properties similar to planetary systems if they were formed in the same way, but the short orbital period and high eccentricity of TOI-1994b may contrast this theory. An evolved host provides a valuable opportunity to understand the influence stellar evolution has on the substellar companion’s fundamental properties. With precise age, mass, and radius, the global analysis and characterization of TOI-1994b augments the small number of transiting brown dwarfs and allows the testing of substellar evolution models. -
Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’s
TESS mission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG -band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55M J<MP < 3.88M J) and sizes (0.967R J<RP < 1.438R J) and orbit stars that have an effective temperature in the range of 5360 K <T eff< 6860 K with GaiaG -band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( ) and TOI-5301 b ( ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.Free, publicly-accessible full text available June 25, 2025 -
We report the confirmation and characterisation of TOI-1820 b, TOI-2025 b, and TOI-2158 b, three Jupiter-sized planets on short-period orbits around G-type stars detected by TESS. Through our ground-based efforts using the FIES and Tull spectrographs, we have confirmed these planets and characterised their orbits, and find periods of around 4.9 d, 8.9 d, and 8.6 d for TOI-1820 b, TOI-2025 b, and TOI-2158 b, respectively. The sizes of the planets range from 0.96 to 1.14 Jupiter radii, and their masses are in the range from 0.8 to 4.4 Jupiter masses. For two of the systems, namely TOI-2025 and TOI-2158, we see a long-term trend in the radial velocities, indicating the presence of an outer companion in each of the two systems. For TOI-2025 we furthermore find the star to be well aligned with the orbit, with a projected obliquity of 9 −31 +33 °. As these planets are all found in relatively bright systems ( V ~ 10.9–11.6 mag), they are well suited for further studies, which could help shed light on the formation and migration of hot and warm Jupiters.more » « less
-
Abstract JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature
T eqand planetary radiusR pand are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Free, publicly-accessible full text available April 23, 2025 -
Abstract The Kepler and TESS missions have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here, we introduce the TESS-Keck Survey (TKS), an RV program using ∼100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K ≤ T eff <6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets ( R p ≤ 4 R ⊕ ), 11 systems with multiple transiting candidates, six sub-day-period planets and three planets that are in or near the habitable zone ( S inc ≤ 10 S ⊕ ) of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available and can be adapted for any survey that requires a balance of multiple science interests within a given telescope allocation.more » « less
-
ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 d, 0.394$^{+0.035}_{-0.038}$), TOI-2145 b (P = 10.261 d, e = $0.208^{+0.034}_{-0.047}$), and TOI-2497 b (P = 10.656 d, e = $0.195^{+0.043}_{-0.040}$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $5.26^{+0.38}_{-0.37}$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.more » « less