- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kiessler, Peter (2)
-
Lund, Robert (2)
-
Chan, John (1)
-
Kokoszka, Piotr (1)
-
Nicholson, John (1)
-
Sharp, Julia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nicholson, John; Kokoszka, Piotr; Lund, Robert; Kiessler, Peter; Sharp, Julia (, Statistical Modelling)We propose and estimate an alternating renewal model describing the propagation of anomalies in a backbone internet network in the United States. Internet anomalies, either caused by equipment malfunction, news events or malicious attacks, have been a focus of research in network engineering since the advent of the internet over 30 years ago. This article contributes to the understanding of statistical properties of the times between the arrivals of the anomalies, their duration and stochastic structure. Anomalous, or active, time periods are modelled as periods containing clusters or 1s, where 1 indicates a presence of an anomaly. The inactive periods consisting entirely of 0s dominate the 0–1 time series in every link. Since the active periods contain 0s, a separation parameter is introduced and estimated jointly with all other parameters of the model. Our statistical analysis shows that the integer-valued separation parameter and five other non-negative, scalar parameters satisfactorily describe all statistical properties of the observed 0–1 series.more » « less
An official website of the United States government

Full Text Available