skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Killamsetty, Krishnateja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Model-Agnostic Meta-Learning (MAML), a popular gradient-based meta-learning framework, assumes that the contribution of each task or instance to the meta-learner is equal.Hence, it fails to address the domain shift between base and novel classes in few-shot learning. In this work, we propose a novel robust meta-learning algorithm, NESTEDMAML, which learns to assign weights to training tasks or instances. We con-sider weights as hyper-parameters and iteratively optimize them using a small set of validation tasks set in a nested bi-level optimization approach (in contrast to the standard bi-level optimization in MAML). We then applyNESTED-MAMLin the meta-training stage, which involves (1) several tasks sampled from a distribution different from the meta-test task distribution, or (2) some data samples with noisy labels.Extensive experiments on synthetic and real-world datasets demonstrate that NESTEDMAML efficiently mitigates the effects of ”unwanted” tasks or instances, leading to significant improvement over the state-of-the-art robust meta-learning methods. 
    more » « less
  2. Active learning has proven to be useful for minimizing labeling costs by selecting the most informative samples. However, existing active learning methods do not work well in realistic scenarios such as imbalance or rare classes, out-of-distribution data in the unlabeled set, and redundancy. In this work, we propose SIMILAR (Submodular Information Measures based actIve LeARning), a unified active learning framework using recently proposed submodular information measures (SIM) as acquisition functions. We argue that SIMILAR not only works in standard active learning, but also easily extends to the realistic settings considered above and acts as a one-stop solution for active learning that is scalable to large real-world datasets. Empirically, we show that SIMILAR significantly outperforms existing active learning algorithms by as much as ~5% - 18% in the case of rare classes and ~5% - 10% in the case of out-of-distribution data on several image classification tasks like CIFAR-10, MNIST, and ImageNet. SIMILAR is available as a part of the DISTIL toolkit: "this https URL". 
    more » « less