skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kilpatrick, C D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In an effort to search for faint sources of emission over arbitrary timescales, we present a novel method for analyzing forced photometry light curves in difference imaging from optical surveys. Our method “ATLAS Clean,” or ATClean, utilizes the reported fluxes, uncertainties, and fits to the point-spread function (PSF) from difference images to quantify the statistical significance of individual measurements. We apply this method to control light curves across the image to determine whether any source of flux is present in the data for a range of specific timescales. From ATLASo-band imaging at the site of the Type II supernova (SN) 2023ixf in M101 from 2015–2023, we show that this method accurately reproduces the 3σflux limits produced from other, more computationally expensive methods. We derive limits for emission on timescales of 5 days and 80–300 days at the site of SN 2023ixf, which are 19.8 and 21.3 mag, respectively. The latter limits rule out variability for unextinguished red supergiants with initial masses >22M, comparable to the most luminous predictions for the SN 2023ixf progenitor system. We also compare our limits to short-timescale outbursts, similar to those expected for Type IIn SN progenitor stars or the Type II SN 2020tlf, and rule out outburst ejecta masses of >0.021M, much lower than the inferred mass of circumstellar matter around SN 2023ixf in the literature. In the future, these methods can be applied to any forced photometry on difference imaging from other surveys, such as Rubin optical imaging. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  2. Abstract We present an ultraviolet to infrared search for the electromagnetic (EM) counterpart to GW190425, the second ever binary neutron star merger discovered by the LIGO-Virgo-KAGRA Collaboration. GW190425 was more distant and had a larger localization area than GW170817, so we use a new tool,Teglon, to redistribute the GW190425 localization probability in the context of galaxy catalogs within the final localization volume. We derive a 90th percentile area of 6688 deg2, a ∼1.5× improvement relative to the LIGO/Virgo map, and show howTeglonprovides an order-of-magnitude boost to the search efficiency of small (≤1 deg2) field-of-view instruments. We combine our data with a large, publicly reported imaging data set, covering 9078.59 deg2of unique area and 48.13% of the LIGO/Virgo-assigned localization probability, to calculate the most comprehensive kilonova (KN), short gamma-ray burst (sGRB) afterglow, and model-independent constraints on the EM emission from a hypothetical counterpart to GW190425 to date under the assumption that no counterpart was found in these data. If the counterpart were similar to AT 2017gfo, there would be a 28.4% chance of it being detected in the combined data set. We are relatively insensitive to an on-axis sGRB, and rule out a generic transient with a similar peak luminosity and decline rate as AT 2017gfo to 30% confidence. Finally, across our new imaging and publicly reported data, we find 28 candidate optical counterparts that we cannot rule out as being associated with GW190425, finding that four such counterparts discovered within the localization volume and within 5 days of merger exhibit luminosities consistent with a KN. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  3. Abstract We present UV–optical–near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time (“flash”) spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of Hi, Hei, Ciii, and Niiiwith a narrow core and broad, symmetric wings (i.e., “IIn-like”) arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of Heii, Civ, Niv/v, and Ovbecame visible. This phenomenon is temporally consistent with a blueward shift in the UV–optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale oftIIn= 3.8 ± 1.6 days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes ofMw2= −18.7 mag andMg= −18.1 mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non–local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of M ̇ = 10 2 M yr−1(vw= 50 km s−1), confined to a distance ofr< 5 × 1014cm. Assuming a wind velocity ofvw= 50 km s−1, the progenitor star underwent an enhanced mass-loss episode in the last ∼3 yr before explosion. 
    more » « less
  4. Fast radio bursts (FRBs) are millisecond-duration pulses of radio emission originating from extragalactic distances. Radio dispersion is imparted on each burst by intervening plasma, mostly located in the intergalactic medium. In this work, we observe the burst FRB 20220610A and localize it to a morphologically complex host galaxy system at redshift 1.016 ± 0.002. The burst redshift and dispersion measure are consistent with passage through a substantial column of plasma in the intergalactic medium and extend the relationship between those quantities measured at lower redshift. The burst shows evidence for passage through additional turbulent magnetized plasma, potentially associated with the host galaxy. We use the burst energy of 2 × 1042erg to revise the empirical maximum energy of an FRB. 
    more » « less
  5. Abstract The modern study of astrophysical transients has been transformed by an exponentially growing volume of data. Within the last decade, the transient discovery rate has increased by a factor of ∼20, with associated survey data, archival data, and metadata also increasing with the number of discoveries. To manage the data at this increased rate, we require new tools. Here we presentYSE-PZ, a transient survey management platform that ingests multiple live streams of transient discovery alerts, identifies the host galaxies of those transients, downloads coincident archival data, and retrieves photometry and spectra from ongoing surveys.YSE-PZalso presents a user with a range of tools to make and support timely and informed transient follow-up decisions. Those subsequent observations enhance transient science and can reveal physics only accessible with rapid follow-up observations. Rather than automating out human interaction,YSE-PZfocuses on accelerating and enhancing human decision making, a role we describe as empowering the human-in-the-loop. Finally,YSE-PZis built to be flexibly used and deployed;YSE-PZcan support multiple, simultaneous, and independent transient collaborations through group-level data permissions, allowing a user to view the data associated with the union of all groups in which they are a member.YSE-PZcan be used as a local instance installed via Docker or deployed as a service hosted in the cloud. We provideYSE-PZas an open-source tool for the community. 
    more » « less
  6. Abstract We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (δt< 2 days) spectra show transient, narrow emission lines from shock ionization of confined (r< 1015cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of Hi, Hei/ii, Civ, and Niii/iv/vfrom the CSM persist on a characteristic timescale (tIIn) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 “comparison” SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and bothtIInand the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times,tIIn, and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: t IIn 3.8 [ M ̇ / (0.01Myr−1)] days. 
    more » « less
  7. Abstract We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofMBH∼ 108Mand an Eddington ratioLbol/LEdd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanLX≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs. 
    more » « less
  8. Abstract We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion’s forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06cthat carries an energy of ≈1049erg. Our modeling further reveals a flat CSM density profileρCSM∝R−0.03±0.22up to a break radiusRbr≈ (1.96 ± 0.10) × 1016cm, with a steep density gradient followingρCSM∝R−2.3±0.5at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021M, and that the progenitor’s effective mass-loss rate varied with time over the range (50–500) × 10−5Myr−1for an adopted wind velocityvw= 1000 km s−1and shock microphysical parametersϵe= 0.1,ϵB= 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass loss powered by gravity waves and/or interaction with a binary companion. 
    more » « less
  9. ABSTRACT We present the discovery of FRB 20210410D with the MeerKAT radio interferometer in South Africa, as part of the MeerTRAP commensal project. FRB 20210410D has a dispersion measure DM = 578.78 ± 2 $${\rm pc \, cm^{-3}}$$ and was localized to subarcsec precision in the 2 s images made from the correlation data products. The localization enabled the association of the FRB with an optical galaxy at z = 0.1415, which when combined with the DM places it above the 3σ scatter of the Macquart relation. We attribute the excess DM to the host galaxy after accounting for contributions from the Milky Way’s interstellar medium and halo, and the combined effects of the intergalactic medium and intervening galaxies. This is the first FRB that is not associated with a dwarf galaxy to exhibit a likely large host galaxy DM contribution. We do not detect any continuum radio emission at the FRB position or from the host galaxy down to a 3σ rms of 14.4 $$\mu$$Jy beam−1. The FRB has a scattering delay of $$29.4^{+2.8}_{-2.7}$$ ms at 1 GHz, and exhibits candidate subpulses in the spectrum, which hint at the possibility of it being a repeating FRB. Although not constraining, we note that this FRB has not been seen to repeat in 7.28 h at 1.3 GHz with MeerKAT, 3 h at 2.4 GHz with Murriyang, and 5.7 h at simultaneous 2.3 GHz and 8.4 GHz observations with the Deep Space Network. We encourage further follow-up to establish a possible repeating nature. 
    more » « less