- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gaeta, Alexander_L (2)
-
Kim, Bok_Young (2)
-
Okawachi, Yoshitomo (2)
-
Yu, Mengjie (2)
-
Barbosa, Felippe_A_S (1)
-
Desiatov, Boris (1)
-
Domeneguetti, Renato_R (1)
-
Donvalkar, Prathamesh_S (1)
-
Hansson, Tobias (1)
-
Jang, Jae_K (1)
-
Ji, Xingchen (1)
-
Joshi, Chaitali (1)
-
Joshi, Chaitanya (1)
-
Lipson, Michal (1)
-
Lončar, Marko (1)
-
Nussenzveig, Paulo (1)
-
Zhao, Yun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The measurement and stabilization of the carrier–envelope offset frequency via self-referencing is paramount for optical frequency comb generation, which has revolutionized precision frequency metrology, spectroscopy, and optical clocks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficient stabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize an interferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. The beatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second-harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation of a strong signal as compared to a traditional interferometer. Our technology provides a highly simplified system that is robust, low in cost, and adaptable for precision metrology for use outside a research laboratory.more » « less
-
Zhao, Yun; Ji, Xingchen; Kim, Bok_Young; Donvalkar, Prathamesh_S; Jang, Jae_K; Joshi, Chaitanya; Yu, Mengjie; Joshi, Chaitali; Domeneguetti, Renato_R; Barbosa, Felippe_A_S; et al (, Optica)Over the past decade, remarkable advances have been realized in chip-based nonlinear photonic devices for classical and quantum applications in the near- and mid-infrared regimes. However, few demonstrations have been realized in the visible and near-visible regimes, primarily due to the large normal material group-velocity dispersion (GVD) that makes it challenging to phase match third-order parametric processes. In this paper, we show that exploiting dispersion engineering of higher-order waveguide modes provides waveguide dispersion that allows for small or anomalous GVD in the visible and near-visible regimes and phase matching of four-wave mixing processes. We illustrate the power of this concept by demonstrating in silicon nitride microresonators a near-visible mode-locked Kerr frequency comb and a narrowband photon-pair source compatible with Rb transitions. These realizations extend applications of nonlinear photonics towards the visible and near-visible regimes for applications in time and frequency metrology, spectral calibration, quantum information, and biomedical applications.more » « less