Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims. We investigate microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2021 and 2022 seasons to identify planetary lensing events displaying a consistent anomalous pattern. Our investigation reveals that the light curves of two lensing events, KMT-2021-BLG-2609 and KMT-2022-BLG-0303, exhibit a similar anomaly, in which short-term positive deviations appear on the sides of the low-magnification lensing light curves.Methods. To unravel the nature of these anomalies, we meticulously analyze each of the lensing events. Our investigations reveal that these anomalies stem from a shared channel, wherein the source passed near the planetary caustic induced by a planet with projected separations from the host star exceeding the Einstein radius. We find that interpreting the anomaly of KMT-2021-BLG-2609 is complicated by the “inner–outer” degeneracy, whereas for KMT-2022-BLG-0303, there is no such issue despite similar lens-system configurations. In addition to this degeneracy, interpreting the anomaly in KMT-2021-BLG-2609 involves an additional degeneracy between a pair of solutions, in which the source partially envelops the caustic and the other three solutions in which the source fully envelopes the caustic. As in an earlier case of this so-called von Schlieffen–Cannae degeneracy, the former solutions have substantially higher mass ratio.Results. Through Bayesian analyses conducted based on the measured lensing observables of the event time scale and angular Einstein radius, the host of KMT-2021-BLG-2609L is determined to be a low-mass star with a mass ~0.2M ⊙in terms of a median posterior value, while the planet’s mass ranges from approximately 0.032 to 0.112 times that of Jupiter, depending on the solutions. For the planetary system KMT-2022-BLG-0303L, it features a planet with a mass of approximately 0.51M Jand a host star with a mass of about 0.37M ⊙. In both cases, the lenses are most likely situated in the bulge.Free, publicly-accessible full text available September 1, 2025 -
Abstract We report a free-floating planet (FFP) candidate identified from the analysis of the microlensing event KMT-2023-BLG-2669. The lensing light curve is characterized by a short duration (≲3 days) and a small amplitude (≲0.7 mag). From the analysis, we find an Einstein timescale of
t E⋍ 0.33 days and an Einstein radius ofθ E⋍ 4.41μ as. These measurements enable us to infer the lens mass as , whereπ relis the relative lens–source parallax. The inference implies that the lens is a sub-Neptune- to Saturn-mass object, depending on its unknown distance. This is the ninth isolated planetary mass microlens withθ E< 10μ as, which is a useful threshold for an FFP candidate. We conduct extensive searches for possible signals of a host star in the light curve, but find no strong evidence for the host. We investigate the possibility of using late-time high-resolution imaging to probe for possible hosts. In particular, we discuss the case of finite-source point-lens FFP candidates, for which it would be possible to search for very-wide-separation hosts immediately, although such searches are “high risk, high reward.” -
Spectroscopy in the mm/sub-mm wavelength range is a powerful tool to study the gaseous medium in various astrophysical environments. The next generation Event Horizon Telescope (ngEHT) equipped with a wide-bandwidth backend system has great potential for science using high angular resolution spectroscopy. Spectral line VLBI studies using the ngEHT will enable us to scrutinize compact astrophysical objects obscured by an optically thick medium on unprecedented angular scales. However, the capabilities of ngEHT for spectroscopy and specific scientific applications have not been properly envisioned. In this white paper, we briefly address science cases newly achievable via spectral line VLBI observations in the mm/sub-mm wavelength ranges, and suggest technical requirements to facilitate spectral line VLBI studies in the ngEHT era.more » « less
-
Abstract We report the analysis of four unambiguous planets and one possible planet from the subprime fields (Γ ≤ 1 hr−1) of the 2017 Korea Microlensing Telescope Network (KMTNet) microlensing survey, to complete the KMTNet AnomalyFinder planetary sample for the 2017 subprime fields. They are KMT-2017-BLG-0849, KMT-2017-BLG-1057, OGLE-2017-BLG-0364, and KMT-2017-BLG-2331 (unambiguous), as well as KMT-2017-BLG-0958 (possible). For the four unambiguous planets, the mean planet–host mass ratios,
q , are (1.0, 1.2, 4.6, 13) × 10−4, the median planetary masses are (6.4, 24, 76, 171)M ⊕, and the median host masses are (0.19, 0.57, 0.49, 0.40)M ⊙, respectively, found from a Bayesian analysis. We have completed the Anomaly Finder planetary sample from the first 4 yr of KMTNet data (2016–2019), with 112 unambiguous planets in total, which nearly tripled the microlensing planetary sample. The “sub-Saturn desert” ( ) found in the 2018 and 2019 KMTNet samples is confirmed by the 2016 and 2017 KMTNet samples.Free, publicly-accessible full text available July 2, 2025 -
Aims . Light curves of microlensing events occasionally deviate from the smooth and symmetric form of a single-lens single-source event. While most of these anomalous events can be accounted for by employing a binary-lens single-source (2L 1S) or a single-lens binary-source (1L2S) framework, it is established that a small fraction of events remain unexplained by either of these interpretations. We carried out a project in which data collected by high-cadence microlensing surveys were reinvestigated with the aim of uncovering the nature of anomalous lensing events with no proposed 2L 1S or 1L 2S models.Methods . From the project we found that the anomaly appearing in the lensing event OGLE-2023-BLG-0836 cannot be explained by the usual interpretations, and we conducted a comprehensive analysis of the event. From thorough modeling of the light curve under sophisticated lens-system configurations, we arrived at the conclusion that a triple-mass lens system is imperative to account for the anomalous features observed in the lensing light curve.Results . From the Bayesian analysis using the measured observables of the event timescale and angular Einstein radius, we determined that the least massive component of the lens has a planetary mass of 4.36−2.18+2.35M J. This planet orbits within a stellar binary system composed of two stars with masses 0.71−0.36+0.38M ⊙and 0.56−0.28+0.30M ⊙. This lensing event signifies the sixth occurrence of a planetary microlensing system in which a planet belongs to a stellar binary system.Free, publicly-accessible full text available May 1, 2025 -
Aims . We investigate the 2023 season data from high-cadence microlensing surveys with the aim of detecting partially covered shortterm signals and revealing their underlying astrophysical origins. Through this analysis, we ascertain that the signals observed in the lensing events KMT-2023-BLG-0416, KMT-2023-BLG-1454, and KMT-2023-BLG-1642 are of planetary origin.Methods . Considering the potential degeneracy caused by the partial coverage of signals, we thoroughly investigate the lensing-parameter plane. In the case of KMT-2023-BLG-0416, we have identified two solution sets, one with a planet-to-host mass ratio ofq ~ 10−2and the other withq ~ 6 × 10−5, within each of which there are two local solutions emerging due to the inner-outer degeneracy. For KMT-2023-BLG-1454, we discern four local solutions featuring mass ratios ofq ~ (1.7−4.3) × 10−3. When it comes to KMT-2023-BLG-1642, we identified two locals withq ~ (6 − 10) × 10−3resulting from the inner-outer degeneracy.Results . We estimate the physical lens parameters by conducting Bayesian analyses based on the event time scale and Einstein radius. For KMT-2023-BLG-0416L, the host mass is ~0.6M ⊙, and the planet mass is ~(6.1−6.7)M Jaccording to one set of solutions and ~0.04M Jaccording to the other set of solutions. KMT-2023-BLG-1454Lb has a mass roughly half that of Jupiter, while KMT-2023-BLG-1646Lb has a mass in the range of between 1.1 to 1.3 times that of Jupiter, classifying them both as giant planets orbiting mid M-dwarf host stars with masses ranging from 0.13 to 0.17 solar masses.Free, publicly-accessible full text available March 1, 2025 -
Abstract We complete the analysis of planetary candidates found by the KMT AnomalyFinder for the 2017 prime fields that cover ∼13 deg2. We report three unambiguous planets: OGLE-2017-BLG-0640, OGLE-2017-BLG-1275, and OGLE-2017-BLG-1237. The first two of these were not previously identified, while the last was not previously published due to technical complications induced by a nearby variable. We further report that a fourth anomalous event, the previously recognized OGLE-2017-BLG-1777, is very likely to be planetary, although its light curve requires unusually complex modeling because the lens and source both have orbiting companions. One of the three unambiguous planets, OGLE-2017-BLG-1275, is the first AnomalyFinder discovery that has a Spitzer microlens parallax measurement,
π E≃ 0.045 ± 0.015, implying that this planetary system almost certainly lies in the Galactic bulge. In the order listed, the four planetary events have planet-host mass ratiosq and normalized projected separationss of , (−2.06, 0.63/1.09), (−2.10, 1.04), and (−2.86, 0.72). Combined with previously published events, the 2017 prime fields contain 11 unambiguous planets with well-measuredq and one very likely candidate, of which three are AnomalyFinder discoveries. In addition to these 12, there are three other unambiguous planets with large uncertainties inq .Free, publicly-accessible full text available February 1, 2025 -
Aims. We aim to investigate the nature of the short-term anomaly that appears in the lensing light curve of KMT-2023-BLG-1866. The anomaly was only partly covered due to its short duration of less than a day, coupled with cloudy weather conditions and a restricted nighttime duration.Methods. Considering the intricacy of interpreting partially covered signals, we thoroughly explored all potential degenerate solutions. Through this process, we identified three planetary scenarios that account for the observed anomaly equally well. These scenarios are characterized by the specific planetary parameters: (s, q )inner= [0.9740 ± 0.0083, (2.46 ± 1.07) × 10−5], (s, q )intermediate= [0.9779 ± 0.0017, (1.56 ± 0.25) × 10−5], and (s, q )outer= [0.9894 ± 0.0107, (2.31 ± 1.29) × 10−5], wheres andq denote the projected separation (scaled to the Einstein radius) and mass ratio between the planet and its host, respectively. We identify that the ambiguity between the inner and outer solutions stems from the inner-outer degeneracy, while the similarity between the intermediate solution and the others is due to an accidental degeneracy caused by incomplete anomaly coverage.Results. Through Bayesian analysis utilizing the constraints derived from measured lensing observables and blending flux, our estimation indicates that the lens system comprises a very-low-mass planet orbiting an early M-type star situated approximately (6.2–6.5) kpc from Earth in terms of median posterior values for the different solutions. The median mass of the planet host is in the range of (0.48–0.51)M ⊙, and that of the planet’s mass spans a range of (2.6–4.0)M E , varying across different solutions. The detection of KMT-2023-BLG-1866Lb signifies the extension of the lensing surveys to very-low-mass planets that have been difficult to detect in earlier surveys.Free, publicly-accessible full text available July 1, 2025 -
Aims. We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves.Methods. We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics.Results. The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are (M host/M ⊙,M planet/M J ,q /10−3,D L /kpc) = (0.58−0.30+0.33, 10.71−5.61+6.17, 17.61 ± 2.25, 6.67−1.30+0.93) for KMT-2020-BLG-0757, (0.53−0.31+0.31, 1.12−0.65+0.65, 2.01 ± 0.07, 6.66−1.84+1.19) for KMT-2022-BLG-0732, (0.42−0.23+0.32, 6.64−3.64+4.98, 15.07 ± 0.86, 7.55−1.30+0.89) for KMT-2022-BLG-1787, and (0.32−0.19+0.34, 4.98−2.94+5.42, 8.74 ± 0.49, 6.27−1.15+0.90) for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun.Free, publicly-accessible full text available July 1, 2025 -
Aims. We undertake a project to reexamine microlensing data gathered from high-cadence surveys. The aim of the project is to reinvestigate lensing events whose light curves exhibit intricate anomaly features that are associated with caustics, but lack prior proposed models that would explain these features.Methods. Through detailed reanalyses considering higher-order effects, we determined that it is vital to account for the orbital motions of lenses to accurately explain the anomaly features observed in the light curves of the lensing events OGLE-2018-BLG-0971, MOA-2023-BLG-065, and OGLE-2023-BLG-0136.Results. We estimated the masses and distances to the lenses by conducting Bayesian analyses using the lensing parameters of the newly found lensing solutions. These analyses showed that the lenses of the events OGLE-2018-BLG-0971 and MOA-2023-BLG-065 are binaries composed of M dwarfs, while the lens of OGLE-2023-BLG-0136 likely is a binary composed of an early K-dwarf primary and a late M-dwarf companion. For all lensing events, the probability that the lens resides in the bulge is considerably higher than that it is located in the disk.Free, publicly-accessible full text available June 1, 2025