skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: KMT-2023-BLG-2669: Ninth Free-floating Planet Candidate with θ E Measurements
Abstract We report a free-floating planet (FFP) candidate identified from the analysis of the microlensing event KMT-2023-BLG-2669. The lensing light curve is characterized by a short duration (≲3 days) and a small amplitude (≲0.7 mag). From the analysis, we find an Einstein timescale oftE⋍ 0.33 days and an Einstein radius ofθE⋍ 4.41μas. These measurements enable us to infer the lens mass as M = 8 M π rel / 0.1 mas 1 , whereπrelis the relative lens–source parallax. The inference implies that the lens is a sub-Neptune- to Saturn-mass object, depending on its unknown distance. This is the ninth isolated planetary mass microlens withθE< 10μas, which is a useful threshold for an FFP candidate. We conduct extensive searches for possible signals of a host star in the light curve, but find no strong evidence for the host. We investigate the possibility of using late-time high-resolution imaging to probe for possible hosts. In particular, we discuss the case of finite-source point-lens FFP candidates, for which it would be possible to search for very-wide-separation hosts immediately, although such searches are “high risk, high reward.”  more » « less
Award ID(s):
2108414
PAR ID:
10541510
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
168
Issue:
4
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 152
Size(s):
Article No. 152
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the analysis of a microlensing event KMT-2022-BLG-0086 of which the overall light curve is not described by a binary-lens single-source (2L1S) model, which suggests the existence of an extra lens or an extra source. We found that the event is best explained by the binary-lens binary-source (2L2S) model, but the 2L2S model is only favored over the triple-lens single-source (3L1S) model by Δχ2 ≃ 9. Although the event has noticeable anomalies around the peak of the light curve, they are not enough covered to constrain the angular Einstein radiusθE, thus we only measure the minimum angular Einstein radius θ E , min . From the Bayesian analysis, it is found that that the binary lens system is a binary star with masses of ( m 1 , m 2 ) = ( 0.4 6 0.25 + 0.35 M , 0.7 5 0.55 + 0.67 M ) at a distance of D L = 5.8 7 1.79 + 1.21 kpc, while the triple lens system is a brown dwarf or a massive giant planet in a low-mass binary-star system with masses of ( m 1 , m 2 , m 3 ) = ( 0.4 3 0.35 + 0.41 M , 0.05 6 0.047 + 0.055 M , 20.8 4 17.04 + 20.20 M J ) at a distance of D L = 4.0 6 3.28 + 1.39 kpc, indicating a disk lens system. The 2L2S model yields the relative lens-source proper motion ofμrel ≥ 4.6 mas yr−1that is consistent with the Bayesian result, whereas the 3L1S model yieldsμrel ≥ 18.9 mas yr−1, which is more than three times larger than that of a typical disk object of ∼6 mas yr−1and thus is not consistent with the Bayesian result. This suggests that the event is likely caused by the binary-lens binary-source model. 
    more » « less
  2. Abstract We report on the discovery and analysis of the planetary microlensing event OGLE-2019-BLG-1180 with a planet-to-star mass ratioq∼ 0.003. The event OGLE-2019-BLG-1180 has unambiguous cusp-passing and caustic-crossing anomalies, which were caused by a wide planetary caustic withs≃ 2, wheresis the star–planet separation in units of the angular Einstein radiusθE. Thanks to well-covered anomalies by the Korea Micorolensing Telescope Network (KMTNet), we measure both the angular Einstein radius and the microlens parallax in spite of a relatively short event timescale oftE= 28 days. However, because of a weak constraint on the parallax, we conduct a Bayesian analysis to estimate the physical lens parameters. We find that the lens system is a super-Jupiter-mass planet of M p = 1.75 0.51 + 0.53 M J orbiting a late-type star of M h = 0.55 0.26 + 0.27 M at a distance D L = 6.1 1.3 + 0.9 kpc . The projected star–planet separation is a = 5.19 1.23 + 0.90 au , which means that the planet orbits at about four times the snow line of the host star. Considering the relative lens–source proper motion ofμrel= 6 mas yr−1, the lens will be separated from the source by 60 mas in 2029. At that time one can measure the lens flux from adaptive optics imaging of Keck or a next-generation 30 m class telescope. OGLE-2019-BLG-1180Lb represents a growing population of wide-orbit planets detected by KMTNet, so we also present a general investigation into prospects for further expanding the sample of such planets. 
    more » « less
  3. Abstract A star completely destroyed in a tidal disruption event (TDE) ignites a luminous flare that is powered by the fallback of tidally stripped debris to a supermassive black hole (SMBH) of massM. We analyze two estimates for the peak fallback rate in a TDE, one being the “frozen-in” model, which predicts a strong dependence of the time to peak fallback rate,tpeak, on both stellar mass and age, with 15 days ≲tpeak≲ 10 yr for main sequence stars with masses 0.2 ≤M/M≤ 5 andM= 106M. The second estimate, which postulates that the star is completely destroyed when tides dominate the maximum stellar self-gravity, predicts thattpeakis very weakly dependent on stellar type, with t peak = 23.2 ± 4.0 days M / 10 6 M 1 / 2 for 0.2 ≤M/M≤ 5, while t peak = 29.8 ± 3.6 days M / 10 6 M 1 / 2 for a Kroupa initial mass function truncated at 1.5M. This second estimate also agrees closely with hydrodynamical simulations, while the frozen-in model is discrepant by orders of magnitude. We conclude that (1) the time to peak luminosity in complete TDEs is almost exclusively determined by SMBH mass, and (2) massive-star TDEs power the largest accretion luminosities. Consequently, (a) decades-long extra-galactic outbursts cannot be powered by complete TDEs, including massive-star disruptions, and (b) the most highly super-Eddington TDEs are powered by the complete disruption of massive stars, which—if responsible for producing jetted TDEs—would explain the rarity of jetted TDEs and their preference for young and star-forming host galaxies. 
    more » « less
  4. A<sc>bstract</sc> A search for the fully reconstructed$$ {B}_s^0 $$ B s 0 → μ+μγdecay is performed at the LHCb experiment using proton-proton collisions at$$ \sqrt{s} $$ s = 13 TeV corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$ B B s 0 μ + μ γ < 4.2 × 10 8 , m μ + μ 2 m μ 1.70 GeV / c 2 , B B s 0 μ + μ γ < 7.7 × 10 8 , m μ + μ 1.70, 2.88 GeV / c 2 , B B s 0 μ + μ γ < 4.2 × 10 8 , m μ + μ 3.92 m B s 0 GeV / c 2 , at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ,1.70] GeV/c2dimuon mass region excluding the contribution from the intermediateϕ(1020) meson, and in the region combining all dimuon-mass intervals. 
    more » « less
  5. Abstract The presence of magnetic fields in the late inspiral of black hole–neutron star binaries could lead to potentially detectable electromagnetic precursor transients. Using general-relativistic force-free electrodynamics simulations, we investigate premerger interactions of the common magnetosphere of black hole–neutron star systems. We demonstrate that these systems can feature copious electromagnetic flaring activity, which we find depends on the magnetic field orientation but not on black hole spin. Due to interactions with the surrounding magnetosphere, these flares could lead to fast-radio-burst-like transients and X-ray emission, with EM 10 41 B * / 10 12 G 2 erg s 1 as an upper bound on the luminosity, whereB*is the magnetic field strength on the surface of the neutron star. 
    more » « less