Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We studyℓ∞norms ofℓ2-normalized eigenfunctions of quantum cat maps. For maps with short quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bièvre (2000,Communications in Mathematical Physics,211, 659–686)) we show that there exists a sequence of eigenfunctionsuwith . For general eigenfunctions we show the upper bound . Here the semiclassical parameter is . Our upper bound is analogous to the one proved by Bérard in P Bérard (1977,Mathematische Zeitschrift,155, 249-276) for compact Riemannian manifolds without conjugate points.more » « less
-
The complex Green operator $$\mathcal{G}$$ on CR manifolds is the inverse of the Kohn-Laplacian $$\square_b$$ on the orthogonal complement of its kernel. In this note, we prove Schatten and Sobolev estimates for $$\mathcal{G}$$ on the unit sphere $$\mathbb{S}^{2n-1}\subset \mathbb{C}^n$$. We obtain these estimates by using the spectrum of $$\boxb$$ and the asymptotics of the eigenvalues of the usual Laplace-Beltrami operator.more » « less
An official website of the United States government

Full Text Available