skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Ye Chan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, post-synthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively-charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to n-methyl pyridinium groups using methyl iodide. The adsorption kinetics and thermodynamics of polyethylene glycol-grafted, negatively charged gold nanoparticles (diameters of 12 and 20 nm) were monitored as a function of salt concentration. In a salt-free solution, the polyelectrolyte brush adsorbs gold nanoparticles of both sizes. As the salinity increases, the areal number density of adsorbed nanoparticles monotonically decreases and becomes negligible at high salinity. Interestingly, there is an intermediate range of salt concentrations (i.e., 15 – 20 mM of NaCl) where the decrease in nanoparticle adsorption is more pronounced for smaller particles, leading to size-selective adsorption of the larger nanoparticles. As a further demonstration of selectivity, the polyelectrolyte brush is immersed in a binary mixture of 12-nm and 20-nm nanoparticles and found to selectively capture larger particles with ~ 90 % selectivity. In addition, the size distribution of as-synthesized gold nanoparticles, with an average diameter of 12 nm, was reduced by selectively removing larger particles by exposing the solution to polyelectrolyte brush surfaces. This study demonstrates the potential of a polyelectrolyte brush separation device to remove larger nanoparticles by controlling electrostatic interactions between polymer brushes and particles 
    more » « less
    Free, publicly-accessible full text available November 6, 2025
  2. Conjugating biomolecules, such as antibodies, to bioconjugate moieties on lipid surfaces is a powerful tool for engineering the surface of diverse biomaterials, including cells and nanoparticles. We developed supported lipid bilayers (SLBs) presenting well-defined spatial distributions of functional moieties as models for precisely engineered functional biomolecular-lipid surfaces. We used quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) to determine how vesicles containing a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[azido(polyethylene glycol)-2000] (DSPE-PEG-N3) form SLBs as a function of the lipid phase transition temperature (Tm). Above the DPPC Tm, DPPC/DSPE-PEG-N3 vesicles form SLBs with functional azide moieties on SiO2 substrates via vesicle fusion. Below this Tm, DPPC/DSPE-PEG-N3 vesicles attach to SiO2 intact. Intact DPPC/DSPE-PEG-N3 vesicles on the SiO2 surfaces fuse and rupture to form SLBs when temperature is brought above the DPPC Tm. AFM studies show uniform and complete DPPC/DSPE-PEG-N3 SLB coverage of SiO2 surfaces for different DSPE-PEG-N3 concentrations. As the DSPE-PEG-N3 concentration increases from 0.01 to 6 mol%, the intermolecular spacing of DSPE-PEG-N3 in the SLBs decreases from 4.6 to 1.0 nm. The PEG moiety undergoes a mushroom to brush transition as DSPE-PEG-N3 concentration varies from 0.1 to 2.0 mol%. Via copper-free click reaction, IgG was conjugated to SLB surfaces with 4.6 nm or 1.3 nm inter-DSPE-PEG-N3 spacing. QCM-D and AFM data show; 1) uniform and complete IgG layers of similar mass and thickness on the two types of SLB; 2) a higher-viscosity/less rigid IgG layer on the SLB with 4.6 nm inter-DSPE-PEG-N3 spacing. Our studies provide a blueprint for SLBs modeling spatial control of functional macromolecules on lipid surfaces, including surfaces of lipid nanoparticles and cells. 
    more » « less
  3. The ubiquitous nature of microorganisms, especially of biofilm-forming bacteria, makes biofouling a prevalent challenge in many settings, including medical and industrial environments immersed in liquid and subjected to shear forces. Recent studies have shown that zwitterionic groups are effective in suppressing bacteria and protein adhesion as well as biofilm growth. However, the effect of zwitterionic groups on the removal of surface-bound bacteria has not been extensively studied. Here we present a microfluidic approach to evaluate the effectiveness in facilitating bacteria detachment by shear of an antifouling surface treatment using (3-(dimethyl;(3-trimethoxysilyl)propyl)ammonia propane-1-sulfonate), a sulfobetaine silane (SBS). Control studies show that SBS-functionalized surfaces greatly increase protein (bovine serum albumin) removal upon rinsing. On the same surfaces, enhanced bacteria ( Pseudomonas aeruginosa ) removal is observed under shear. To quantify this enhancement a microfluidic shear device is employed to investigate how SBS-functionalized surfaces promote bacteria detachment under shear. By using a microfluidic channel with five shear zones, we compare the removal of bacteria from zwitterionic and glass surfaces under different shear rates. At times of 15 min, 30 min, and 60 min, bacteria adhesion on SBS-functionalized surfaces is reduced relative to the control surface (glass) under quiescent conditions. However, surface-associated bacteria on the SBS-functionalized glass and control show similar percentages of live cells, suggesting minimal intrinsic biocidal effect from the SBS-functionalized surface. Notably, when exposed to shear rates ranging from 10 4 to 10 5 s −1 , significantly fewer bacteria remain on the SBS-functionalized surfaces. These results demonstrate the potential of zwitterionic sulfobetaine as effective antifouling coatings that facilitate the removal of bacteria under shear. 
    more » « less