skip to main content


Search for: All records

Creators/Authors contains: "Kim, Yonghyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Circulating tumor cells (CTCs) are some of the key culprits that cause cancer metastasis and metastasis-related deaths. These cells exist in a dynamic microenvironment where they experience fluid shear stress (FSS), and the CTCs that survive FSS are considered to be highly metastatic and stem cell-like. Biophysical stresses such as FSS are also known to cause the production of extracellular vesicles (EVs) that can facilitate cell-cell communication by carrying biomolecular cargos such as microRNAs. Here, we hypothesized that physiological FSS will impact the yield of EV production, and that these EVs will have biomolecules that transform the recipient cells. The EVs were isolated using direct flow filtration with and without FSS from the MDA-MB-231 cancer cell line, and the expression of key stemness-related genes and microRNAs was characterized. There was a significantly increased yield of EVs under FSS. These EVs also contained significantly increased levels of miR-21, which was previously implicated to promote metastatic progression and chemotherapeutic resistance. When these EVs from FSS were introduced to MCF-7 cancer cells, the recipient cells had a significant increase in their stem-like gene expression and CD44+/CD24− cancer stem cell-like subpopulation. There was also a correlated increased proliferation along with an increased ATP production. Together, these findings indicate that the presence of physiological FSS can directly influence the EVs’ production and their contents, and that the EV-mediated transfer of miR-21 can have an important role in FSS-existing contexts, such as in cancer metastasis. 
    more » « less
    Free, publicly-accessible full text available June 25, 2025
  2. Gallium-based liquid metals are unique in their deformably, conductive nature and the oxide that grows natively on their surface. The oxide of galinstan, gallium–indium–tin, is composed of Ga/In/Sn oxides known for their semiconducting properties. The native galinstan oxide, however, is amorphous and improving electrical properties is understudied. In this work, annealing, a method for improving conductivity and hardness in metals and ceramics, is studied to control galinstan oxide crystallinity, modulus, and resistivity. It was found that while annealing increases crystallinity and grain size, local composition and thickness must also be considered when analyzing galinstan oxide electrical and mechanical properties. 
    more » « less
  3. Protic ruthenium complexes using the dihydroxybipyridine (dhbp) ligand combined with a spectator ligand (N,N = bpy, phen, dop, Bphen) have been studied for their potential activity vs. cancer cells and their photophysical luminescent properties. These complexes vary in the extent of π expansion and the use of proximal (6,6′-dhbp) or distal (4,4′-dhbp) hydroxy groups. Eight complexes are studied herein as the acidic (OH bearing) form, [(N,N)2Ru(n,n′-dhbp)]Cl2, or as the doubly deprotonated (O− bearing) form. Thus, the presence of these two protonation states gives 16 complexes that have been isolated and studied. Complex 7A, [(dop)2Ru(4,4′-dhbp)]Cl2, has been recently synthesized and characterized spectroscopically and by X-ray crystallography. The deprotonated forms of three complexes are also reported herein for the first time. The other complexes studied have been synthesized previously. Three complexes are light-activated and exhibit photocytotoxicity. The log(Do/w) values of the complexes are used herein to correlate photocytotoxicity with improved cellular uptake. For Ru complexes 1–4 bearing the 6,6′-dhbp ligand, photoluminescence studies (all in deaerated acetonitrile) have revealed that steric strain leads to photodissociation which tends to reduce photoluminescent lifetimes and quantum yields in both protonation states. For Ru complexes 5–8 bearing the 4,4′-dhbp ligand, the deprotonated Ru complexes (5B–8B) have low photoluminescent lifetimes and quantum yields due to quenching that is proposed to involve the 3LLCT excited state and charge transfer from the [O2-bpy]2− ligand to the N,N spectator ligand. The protonated OH bearing 4,4′-dhbp Ru complexes (5A–8A) have long luminescence lifetimes which increase with increasing π expansion on the N,N spectator ligand. The Bphen complex, 8A, has the longest lifetime of the series at 3.45 μs and a photoluminescence quantum yield of 18.7%. This Ru complex also exhibits the best photocytotoxicity of the series. A long luminescence lifetime is correlated with greater singlet oxygen quantum yields because the triplet excited state is presumably long-lived enough to interact with 3O2 to yield 1O2.

     
    more » « less
  4. null (Ed.)
  5. ABSTRACT

    Glioblastoma multiforme (GBM) is the deadliest form of primary brain tumor. GBM tumors are highly heterogeneous, being composed of tumor cells as well as glioblastoma stem cells (GSCs) that contribute to drug resistance and tumor recurrence following treatment. To develop therapeutic strategies, an improved understanding of GSC behavior in their microenvironment is critical. Herein, we have employed three‐dimensional (3D) hyaluronic acid (HA) hydrogels that allow the incorporation of brain microenvironmental cues to investigate GSC behavior. U87 cell line and patient‐derived D456 cells were cultured as suspension cultures (serum‐free) and adherently (in the presence of serum) and were then encapsulated in HA hydrogels. We observed that all the seeded single cells expanded and formed spheres, and the size of the spheres increased with time. Increasing the initial cell seeding density of cells influenced the sphere size distribution. Interestingly, clonal expansion of serum‐free grown tumor cells in HA hydrogels was observed. Also, stemness marker expression of serum and/or serum‐free grown cells was altered when cultured in HA hydrogels. Finally, we demonstrated that HA hydrogels can support long‐term GSC culture (up to 60 days) with retention of stemness markers. Overall, such biomimetic culture systems could further our understanding of the microenvironmental regulation of GSC phenotypes.

     
    more » « less