Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Incorporating inductive biases is a promising approach for tackling challenging robot learning domains with sample-efficient solutions. This paper identifies partially observable domains where symmetries can be a useful inductive bias for efficient learning. Specifically, by encoding the equivariance regarding specific group symmetries into the neural networks, our actor-critic reinforcement learning agents can reuse solutions in the past for related scenarios. Consequently, our equivariant agents outperform non-equivariant approaches significantly in terms of sample efficiency and final performance, demonstrated through experiments on a range of robotic tasks in simulation and real hardware.more » « less
-
Predicting the pose of objects from a single image is an important but difficult computer vision problem. Methods that predict a single point estimate do not predict the pose of objects with symmetries well and cannot represent uncertainty. Alternatively, some works predict a distribution over orientations in SO(3). However, training such models can be computation- and sample-inefficient. Instead, we propose a novel mapping of features from the image domain to the 3D rotation manifold. Our method then leverages SO(3) equivariant layers, which are more sample efficient, and outputs a distribution over rotations that can be sampled at arbitrary resolution. We demonstrate the effectiveness of our method at object orientation prediction, and achieve state-of-the-art performance on the popular PASCAL3D+ dataset. Moreover, we show that our method can model complex object symmetries, without any modifications to the parameters or loss function. Code is available at https://dmklee.github.io/image2sphere/more » « less
-
Reasoning about 3D objects based on 2D images is challenging due to variations in appearance caused by viewing the object from different orientations. Tasks such as object classification are invariant to 3D rotations and other such as pose estimation are equivariant. However, imposing equivariance as a model constraint is typically not possible with 2D image input because we do not have an a priori model of how the image changes under out-of-plane object rotations. The only SO(3)-equivariant models that currently exist require point cloud or voxel input rather than 2D images. In this paper, we propose a novel architecture based on icosahedral group convolutions that reasons in SO(3) by learning a projection of the input image onto an icosahedron. The resulting model is approximately equivariant to rotation in SO(3). We apply this model to object pose estimation and shape classification tasks and find that it outperforms reasonable baselines.more » « less