Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum materials have a fascinating tendency to manifest novel and unexpected electronic states upon proper manipulation. Ideally, such manipulation should induce strong and irreversible changes and lead to new relevant length scales. Plastic deformation introduces large numbers of dislocations into a material, which can organize into extended structures and give rise to qualitatively new physics as a result of the huge localized strains. However, this approach is largely unexplored in the context of quantum materials, which are traditionally grown to be as pristine and clean as possible. Here we show that plastic deformation induces robust magnetism in the quantum paraelectric SrTiO3, a property that is completely absent in the pristine material. We combine scanning magnetic measurements and near-field optical microscopy to find that the magnetic order is localized along dislocation walls and coexists with ferroelectric order along the walls. The magnetic signals can be switched on and off via external stress and altered by external electric fields, which demonstrates that plastically deformed SrTiO3 is a quantum multiferroic. These results establish plastic deformation as a versatile knob for the manipulation of the electronic properties of quantum materials.more » « lessFree, publicly-accessible full text available August 28, 2025
-
Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuationsAbstract The origin of the pseudogap behavior, found in many high-Tcsuperconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formation but suppresses superconductivity. Employing quantum Monte Carlo simulations of a model of itinerant fermions coupled to ferromagnetic spin fluctuations, represented by a quantum rotor, we report numerical evidence of pseudogap behavior, emerging from pairing fluctuations in a quantum-critical non-Fermi liquid. Specifically, we observe enhanced pairing fluctuations and a partial gap opening in the fermionic spectrum. However, the system remains non-superconducting until reaching a much lower temperature. In the pseudogap regime the system displays a “gap-filling rather than “gap-closing behavior, similar to the one observed in cuprate superconductors. Our results present direct evidence of the pseudogap state, driven by superconducting fluctuations.more » « less
-
null (Ed.)Abstract The longstanding view of the zero sound mode in a Fermi liquid is that for repulsive interaction it resides outside the particle-hole continuum and gives rise to a sharp peak in the corresponding susceptibility, while for attractive interaction it is a resonance inside the particle-hole continuum. We argue that in a two-dimensional Fermi liquid there exist two additional types of zero sound: “hidden” and “mirage” modes. A hidden mode resides outside the particle-hole continuum already for attractive interaction. It does not appear as a sharp peak in the susceptibility, but determines the long-time transient response of a Fermi liquid and can be identified in pump-probe experiments. A mirage mode emerges for strong enough repulsion. Unlike the conventional zero sound, it does not correspond to a true pole, yet it gives rise to a peak in the particle-hole susceptibility. It can be detected by measuring the width of the peak, which for a mirage mode is larger than the single-particle scattering rate.more » « less
-
This paper is a short review on the foundations and recent advances in the microscopic Fermi-liquid (FL) theory. We demonstrate that this theory is built on five identities, which follow from conservation of total charge (particle number), spin, and momentum in a translationally and SU(2)-invariant FL. These identities allows one to express the effective mass and quasiparticle residue in terms of an exact vertex function and also impose constraints on the ``quasiparticle'' and ''incoherent" (or ``low-energy'' and ``high-energy'') contributions to the observable quantities. Such constraints forbid certain Pomeranchuk instabilities of a FL, e.g., towards phases with order parameters that coincide with charge and spin currents. We provide diagrammatic derivations of these constraints and of the general (Leggett) formula for the susceptibility in arbitrary angular momentum channel, and illustrate the general relations through simple examples treated in the perturbation theory.more » « less