Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Markel, Scott (Ed.)The opportunity to participate in and contribute to emerging fields is increasingly prevalent in science. However, simply thinking about stepping outside of your academic silo can leave many students reeling from the uncertainty. Here, we describe 10 simple rules to successfully train yourself in an emerging field, based on our experience as students in the emerging field of ecological forecasting. Our advice begins with setting and revisiting specific goals to achieve your academic and career objectives and includes several useful rules for engaging with and contributing to an emerging field.more » « less
-
Abstract. In the age of big data, soil data are more available and richer than ever, but – outside of a few large soil survey resources – they remain largely unusable for informing soil management and understanding Earth system processes beyond the original study.Data science has promised a fully reusable research pipeline where data from past studies are used to contextualize new findings and reanalyzed for new insight.Yet synthesis projects encounter challenges at all steps of the data reuse pipeline, including unavailable data, labor-intensive transcription of datasets, incomplete metadata, and a lack of communication between collaborators.Here, using insights from a diversity of soil, data, and climate scientists, we summarize current practices in soil data synthesis across all stages of database creation: availability, input, harmonization, curation, and publication.We then suggest new soil-focused semantic tools to improve existing data pipelines, such as ontologies, vocabulary lists, and community practices.Our goal is to provide the soil data community with an overview of current practices in soil data and where we need to go to fully leverage big data to solve soil problems in the next century.more » « less
-
Abstract Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous ‘blue carbon’ studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon‐storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R‐shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision‐making.more » « less
-
Abstract Most biodiversity dynamics and ecosystem processes on land take place in microclimates that are decoupled from the climate as measured by standardised weather stations in open, unshaded locations. As a result, microclimate monitoring is increasingly being integrated in many studies in ecology and evolution.Overviews of the protocols and measurement methods related to microclimate are needed, especially for those starting in the field and to achieve more generality and standardisation in microclimate studies.Here, we present 10 practical guidelines for ground‐based research of terrestrial microclimates, covering methods and best practices from initial conceptualisation of the study to data analyses.Our guidelines encompass the significance of microclimates; the specifics of what, where, when and how to measure them; the design of microclimate studies; and the optimal approaches for analysing and sharing data for future use and collaborations. The paper is structured as a chronological guide, leading the reader through each step necessary to conduct a comprehensive microclimate study. At the end, we also discuss further research avenues and development in this field.With these 10 guidelines for microclimate monitoring, we hope to stimulate and advance microclimate research in ecology and evolution, especially under the pressing need to account for buffering or amplifying abilities of contrasting microhabitats in the context of global climate change.more » « less
-
Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.more » « less
An official website of the United States government
