skip to main content


Title: Ten simple rules for training yourself in an emerging field
The opportunity to participate in and contribute to emerging fields is increasingly prevalent in science. However, simply thinking about stepping outside of your academic silo can leave many students reeling from the uncertainty. Here, we describe 10 simple rules to successfully train yourself in an emerging field, based on our experience as students in the emerging field of ecological forecasting. Our advice begins with setting and revisiting specific goals to achieve your academic and career objectives and includes several useful rules for engaging with and contributing to an emerging field.  more » « less
Award ID(s):
1655095 1933016 1926050 1933102 1926388 1638577
NSF-PAR ID:
10303290
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Markel, Scott
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
17
Issue:
10
ISSN:
1553-7358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. Our project builds on prior work that demonstrated the impacts of gender and race on academic trajectories in Electrical, Computer, and Mechanical Engineering (EE, CpE, and ME, respectively) to answer the following questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In Year 4 of our project, the research team has engaged in deeper analysis of our quantitative data from the Multi-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) database and our qualitative data from 79 in-depth interviews of students in the three study majors at our four study institutions. Expanding on findings presented in prior years, in this paper, we describe emergent results from three papers from Year 4 of our project: • Paper # 1: “Who Tells Your Story? Qualitative Methods for Establishing Connections and Eliciting Narratives” was published in the International Journal of Qualitative Methodology in 2021. It includes a description of the development of the card-sorting activity that students completed to describe their reasons for choosing to major in engineering and an exploration of different ways to analyze the data. Analysis of how frequently the factors influencing the major choice were chosen by interviewees has allowed us to identify those factors that carry the greatest importance for students and how they vary for persisters and switchers. • Paper # 2: “GPA Trends of Black Mechanical Engineering Students”: Our early qualitative work has led to questions about students who switch majors and those who leave the university. We are using the MIDFIELD database to better understand characteristics of students who switch majors and who leave the university. We will use functional cluster analysis to group the GPA trends to find clearly defined groups of students' GPA. Preliminary findings suggest that the students who switch majors have different GPA trends than the students who leave their institutions. This holds true for whether the student chooses to switch their major and stay within engineering and students who choose to leave engineering. • Paper # 3: “Pride and Prestige: Factors Influencing How and Why Black Students Choose to Attend a Predominantly White Institution or a Historically Black University”: In this paper, we explore the reasons that students in our study majors decided to attend either a HBCU or a PWI. Our early analysis revealed that students had diverse reasons for college choice, including affordability, location, familiarity with the institution, family encouragement and connections, and prestige of the university. Our paper will also describe the differences between students who attended a HBCU or PWI in their rationale for deciding to attend a particular university. 
    more » « less
  2. Benjamin, L ; Henderson, J A ; Hines, E M (Ed.)
    The topic of engineering identity is neither new nor complete in its coverage within current literature. In fact, although this body of work predates the last ten years, researchers have argued that some of the most significant burgeoning in this area has occurred in the last decade. By applying both quantitative and qualitative lenses to this inquiry, researchers have concluded that, much like a STEM identity, an engineering identity describes how students see themselves, their competence and potential for success in the academic and career context of the field. To further examine the latter component i.e. potential for academic and career success, we attend to an emerging concept of an entrepreneurial engineering identity. This preliminary work unfolded organically; the authors’ primary goal involved a larger Interpretative Phenomenological Analysis (IPA) study that investigated persistence and advanced degree aspirations among 20 Black male engineering undergraduate students from a variety of institutional settings. While we did not intentionally seek to examine this emerging component of engineering identity, our preliminary analysis of participants’ interview data led us down this path. What we observed was a latent phenomenon of interest among participants: these Black male engineering undergraduates recurringly articulated clear intentions for academic and career opportunities that integrated business components into their engineering realities. Kegan’s (1984, 1994) Theory of Meaning-Making provided a framework for understanding how participants perceived the development of business acumen as a strategy for ascending existing corporate/organizational structures, creating new business pathways, and promoting corporate social responsibility. Based on these findings, the authors were inspired to explore the conceptual development of an entrepreneurial engineering identity and its practical application to engineering degree (re)design, student academic advisory and career planning. 
    more » « less
  3. The topic of engineering identity is neither new nor complete in its coverage within current literature. In fact, although this body of work predates the last ten years, researchers have argued that some of the most significant burgeoning in this area has occurred in the last decade. By applying both quantitative and qualitative lenses to this inquiry, researchers have concluded that, much like a STEM identity, an engineering identity describes how students see themselves, their competence and potential for success in the academic and career context of the field. To further examine the latter component i.e. potential for academic and career success, we attend to an emerging concept of an entrepreneurial engineering identity. This preliminary work unfolded organically; the authors’ primary goal involved a larger Interpretative Phenomenological Analysis (IPA) study that investigated persistence and advanced degree aspirations among 20 Black male engineering undergraduate students from a variety of institutional settings. While we did not intentionally seek to examine this emerging component of engineering identity, our preliminary analysis of participants’ interview data led us down this path. What we observed was a latent phenomenon of interest among participants: these Black male engineering undergraduates recurringly articulated clear intentions for academic and career opportunities that integrated business components into their engineering realities. Kegan’s (1984, 1994) Theory of Meaning-Making provided a framework for understanding how participants perceived the development of business acumen as a strategy for ascending existing corporate/organizational structures, creating new business pathways, and promoting corporate social responsibility. Based on these findings, authors were inspired to explore the conceptual development of an entrepreneurial engineering identity and its practical application to engineering degree (re)design, student academic advisory and career planning. 
    more » « less
  4. This Research Full Paper presents the effects of computing identity sub-constructs on the persistence of computer science students. Computer science (CS) is one of the fastest growing disciplines in the world and an emerging critical field for all students to obtain vital skills to be successful in the 21st century. Despite the growing importance of computer science, many university and college programs suffer from low student persistence rates. Disciplinary identity is a theoretical framework that refers to how students see themselves with respect to a discipline and is related to long-term membership in a disciplinary community. The theory has been effectively applied in Science, Technology, Engineering, and Mathematics (STEM) to understand students' success and persistence. This study examines the effects of performance/competence, recognition, interest and sense of belonging on the academic persistence of computer science students. A survey of approximately 1,640 computing students as part of a National Science Foundation (NSF) funded project was developed and administered at three metropolitan public institutions. Confirmatory Factor Analysis (CFA) was performed to validate the sub-constructs of identity for use in a computing identity model. Then, a structural equation model (SEM) was constructed as a snapshot of the structural relationships for describing and quantifying the impact of the identity subconstructs on persistence. The results indicated that our model for CS aligns with prior research on disciplinary identity but also adds the importance of sense of belonging. In addition, the findings indicate that students' academic persistence is directly influenced by their interest. A better understanding of these factors may leverage insight into students’ academic persistence in computer science/engineering programs as well as a meaningful lens of analysis for further curriculum and extracurricular activities. 
    more » « less
  5. CONTEXT There is today a broad consensus that emotions influence all forms of teaching and learning, and scholarship on Emotions in Engineering Education (EEE) is an emerging and rapidly growing field. However, this nascent research is currently very dispersed and not well consolidated. There is also a lack of knowledge about the state of the art, strengths, and limitations of the existing literature in the field, gaps, and future avenues for research. PURPOSE We have conducted a scoping review of EEE research, aiming to provide a first overview of the EEE scholarship landscape. We report here on preliminary findings related to (1) the status of the field, (2) geographical representation of authors, and (3) emerging hot spots and blind spots in terms of research approaches, contexts, and topics. METHODS The scoping review is part of a larger, systematic review of the EEE literature. Using an inclusive search strategy, we retrieved 2,175 items mentioning emotions and engineering education, including common synonyms. Through abstract screening and full text sifting, we identified 184 items that significantly focus on engineering education and emotion. From these items, we extracted and synthesized basic quantitative and qualitative information on publication outlets, author origins, keywords, research approaches, and research contexts. PRELIMINARY RESULTS Surprised by the large number of EEE publications, we found that EEE is a rapidly expanding, but internationally dispersed field. Preliminary results also suggest a dominance of research on higher education, often exploring students’ academic emotions or emotional competences. Research on emotional intelligence and anxiety is particularly common while studies focusing on cultural and sociological aspects of EEE are largely absent. CONCLUSIONS The EEE literature is expanding exponentially. However, the field is not well consolidated, and many blind spots remain to be explored in terms of research approaches, contexts, and foci. To accelerate the development of the field, we invite current and prospective EEE researchers to join our emerging, international community of EEE researchers. 
    more » « less