skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Ko, Hungtang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Springtails (Collembola) have been traditionally portrayed as explosive jumpers with incipient directional takeoff and uncontrolled landing. However, for these collembolans that live near the water, such skills are crucial for evading a host of voracious aquatic and terrestrial predators. We discover that semiaquatic springtails, Isotomurus retardatus , can perform directional jumps, rapid aerial righting, and near-perfect landing on the water surface. They achieve these locomotive controls by adjusting their body attitude and impulse during takeoff, deforming their body in midair, and exploiting the hydrophilicity of their ventral tube, known as the collophore. Experiments and mathematical modeling indicate that directional-impulse control during takeoff is driven by the collophore’s adhesion force, the body angle, and the stroke duration produced by their jumping organ, the furcula. In midair, springtails curve their bodies to form a U-shape pose, which leverages aerodynamic forces to right themselves in less than ~20 ms, the fastest ever measured in animals. A stable equilibrium is facilitated by the water adhered to the collophore. Aerial righting was confirmed by placing springtails in a vertical wind tunnel and through physical models. Due to these aerial responses, springtails land on their ventral side ~85% of the time while anchoring via the collophore on the water surface to avoid bouncing. We validated the springtail biophysical principles in a bioinspired jumping robot that reduces in-flight rotation and lands upright ~75% of the time. Thus, contrary to common belief, these wingless hexapods can jump, skydive, and land with outstanding control that can be fundamental for survival. 
    more » « less
    Free, publicly-accessible full text available November 16, 2023
  2. Black soldier fly larvae are a sustainable protein source and play a vital role in the emerging food-waste recycling industry. One of the challenges of raising larvae in dense aggregations is their rise in temperature during feeding, which, if not mitigated, can become lethal to the larvae. We propose applying air-fluidization to circumvent such overheating. However, the behavior of such a system involves complex air-larva interactions and is poorly understood. In this combined experimental and numerical study, we show that the larval activity changes the behavior of the ensemble when compared to passive particles such as dead larvae. Over a cycle of increasing and then decreasing airflow, the states (pressure and height) of the live larva aggregates are single-value functions of the flow speed. In contrast, dead larva aggregates exhibit hysteresis characteristic of traditional fluidized beds, becoming more porous during the ramp down of airflow. This history-dependence for passive particles is supported by simulations that couple agent-based dynamics and computational fluid dynamics. We show that the hysteresis in height and pressure of the aggregates decreases as the activity of simulated larvae increases. To test if air fluidization can increase larval food intake, we performed feeding trials in a fluidization chamber and visualized the food consumption via x-ray imaging. Although the food mixes more rapidly in faster airflow, the consumption rate decreases. Our findings suggest that providing moderate airflow to larval aggregations may alleviate overheating of larval aggregations and evenly distribute the food without reducing feeding rates. 
    more » « less

    During flash floods, fire ants (Solenopsis invicta Buren) link their bodies together to build rafts to stay afloat, and towers to anchor onto floating vegetation. Can such challenging conditions facilitate synchronization and coordination, resulting in energy savings per capita? To understand how stress affects metabolic rate, we used constant-volume respirometry to measure the metabolism of fire ant workers. Group metabolic rates were measured in a series of conditions: at normal state, at three elevated temperatures, during rafting, and during tower-building. We hypothesized that the metabolic rate of ants at various temperatures would scale isometrically (proportionally with the group mass). Indeed, we found metabolic rates scaled isometrically under all temperature conditions, giving evidence that groups of ants differ from entire colonies, which scale allometrically. We then hypothesized that the metabolism of ants engaged in rafting and tower-building would scale allometrically. We found partial evidence for this hypothesis: ants rafting for short times had allometric metabolic rates, but this effect vanished after 30 min. Rafting for long times and tower-building both scaled isometrically. Tower-building consumed the same energy per capita as ants in their normal state. Rafting ants consumed almost 43% more energy than ants in their normal state, with smaller rafts consuming more energy per capita. Together, our results suggest that stressful conditions requiring coordination can influence metabolic demand.

    This article has an associated First Person interview with the first author of the paper.

    more » « less