- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Athanasiadou, Maria Eleni (1)
-
Audu, Musa (1)
-
Beckerle, Philipp (1)
-
Colucci, Annalisa (1)
-
Daley, Monica A (1)
-
Fey, Dietmar (1)
-
Font-Llagunes, Josep M. (1)
-
Gogeascoechea, Antonio (1)
-
Hnat, Sandra K. (1)
-
Koelewijn, Anne D (1)
-
Koelewijn, Anne D. (1)
-
Makowski, Nathan (1)
-
Moreno, Juan C. (1)
-
Nandor, Mark (1)
-
Quinn, Roger (1)
-
Reichenbach, Marc (1)
-
Reyes, Ryan-David (1)
-
Sartori, Massimo (1)
-
Soekadar, Surjo (1)
-
Triolo, Ronald J. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Hill-type muscle models are widely used, even though they do not accurately represent the relationship between activation and force in dynamic contractions. We explored the use of neural networks as an alternative approach to capture features of dynamic muscle function, without a priori assumptions about force–length–velocity relationships. We trained neural networks using an existing dataset of two guinea fowl muscles to estimate muscle force from activation, fascicle length and velocity. Training data were recorded using sonomicrometry, electromyography and a tendon buckle. First, we compared the neural networks with Hill-type muscle models, using the same data for network training and model optimization. Second, we trained neural networks on larger datasets, in a more realistic machine learning scenario. We found that neural networks generally yielded higher coefficients of determination and lower errors than Hill-type muscle models. Neural networks performed better when estimating forces on the muscle used for training, but on another bird, than on a different muscle of the same bird, likely due to inaccuracies in activation and force scaling. We extracted force–length and force–velocity relationships from the trained neural networks and found that both effects were underestimated and the relationships were not well replicated outside the training data distribution. We discuss suggested experimental designs and the challenge of collecting suitable training data. Given a suitable training dataset, neural networks could provide a useful alternative to Hill-type muscle models, particularly for modeling muscle dynamics in faster movements; however, scaling of the training data should be comparable between muscles and animals.more » « lessFree, publicly-accessible full text available November 18, 2026
-
Koelewijn, Anne D.; Audu, Musa; del-Ama, Antonio J.; Colucci, Annalisa; Font-Llagunes, Josep M.; Gogeascoechea, Antonio; Hnat, Sandra K.; Makowski, Nathan; Moreno, Juan C.; Nandor, Mark; et al (, Frontiers in Neurorobotics)Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.more » « less
An official website of the United States government
