Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable.more » « less
-
null (Ed.)Multi-Agent Path Finding (MAPF), i.e., finding collision-free paths for multiple robots, is important for many applications where small runtimes are necessary, including the kind of automated warehouses operated by Amazon. CBS is a lead- ing two-level search algorithm for solving MAPF optimally. ECBS is a bounded-suboptimal variant of CBS that uses focal search to speed up CBS by sacrificing optimality and instead guaranteeing that the costs of its solutions are within a given factor of optimal. In this paper, we study how to decrease its runtime even further using inadmissible heuristics. Motivated by Explicit Estimation Search (EES), we propose Explicit Estimation CBS (EECBS), a new bounded-suboptimal variant of CBS, that uses online learning to obtain inadmissible estimates of the cost of the solution of each high-level node and uses EES to choose which high-level node to expand next. We also investigate recent improvements of CBS and adapt them to EECBS. We find that EECBS with the improvements runs significantly faster than the state-of-the-art bounded-suboptimal MAPF algorithms ECBS, BCP-7, and eMDD-SAT on a variety of MAPF instances. We hope that the scalability of EECBS enables additional applications for bounded-suboptimal MAPF algorithms.more » « less
-
null (Ed.)Temporal reasoning is central to Artificial Intelligence (AI) and many of its applications. However, the existing algorithmic frameworks for temporal reasoning are not expressive enough to be applicable to robots with complex kinodynamic constraints typically described using differential equations. For example, while minimum and maximum velocity constraints can be encoded in Simple Temporal Networks (STNs), higher-order kinodynamic constraints cannot be represented in existing frameworks. In this paper, we present a novel framework for temporal reasoning called Kinodynamic Networks (KDNs). KDNs combine elements of existing temporal reasoning frameworks with the idea of Bernstein polynomials. The velocity profiles of robots are represented using Bernstein polynomials; and dynamic constraints on these velocity profiles can be converted to linear constraints on the to-be-determined coefficients of their Bernstein polynomials. We study KDNs for their attractive theoretical properties and apply them to the Multi-Agent Path Finding (MAPF) problem with higher-order kinodynamic constraints. We show that our approach is not only scalable but also yields smooth velocity profiles for all robots that can be executed by their controllers.more » « less
-
Begin with the end in mind!1 PhD students in artificial intelligence can start to prepare for their career after their PhD degree immediately when joining graduate school, and probably in many more ways than they think. To help them with that, I asked current PhD students and recent PhD computer-science graduates from the University of Southern California and my own PhD students to recount the important lessons they learned (perhaps too late) and added the advice of Nobel Prize and Turing Award winners and many other researchers (including my own reflections), to create this article.more » « less
-
null (Ed.)The Multi-Agent Path Finding (MAPF) problem arises in many real-world applications, ranging from automated warehousing to multi-drone delivery. Solving the MAPF problem optimally is NP-hard, and existing optimal and bounded-suboptimal MAPF solvers thus usually do not scale to large MAPF instances. Greedy MAPF solvers scale to large MAPF instances, but their solution qualities are often bad. In this paper, we therefore propose a novel MAPF solver, Hierarchical Multi-Agent Path Planner (HMAPP), which creates a spatial hierarchy by partitioning the environment into multiple regions and decomposes a MAPF instance into smaller MAPF sub-instances for each region. For each sub-instance, it uses a bounded-suboptimal MAPF solver to solve it with good solution quality. Our experimental results show that HMAPP solves as large MAPF instances as greedy MAPF solvers while achieving better solution qualities on various maps.more » « less
-
null (Ed.)Multi-Agent Path Finding (MAPF) is the combinatorial problem of finding collision-free paths for multiple agents on a graph. This paper describes MAPF-based software for solving train planning and replanning problems on large-scale rail networks under uncertainty. The software recently won the 2020 Flatland Challenge, a NeurIPS competition trying to determine how to efficiently manage dense traffic on rail networks. The software incorporates many state-of-the-art MAPF or, in general, optimization technologies, such as prioritized planning, large neighborhood search, safe interval path planning, minimum communication policies, parallel computing, and simulated annealing. It can plan collision-free paths for thousands of trains within a few minutes and deliver deadlock-free actions in real-time during execution.more » « less
-
In the Multi-Agent Meeting problem (MAM), the task is to find a meeting location for multiple agents, as well as a path for each agent to that location. In this paper, we introduce MM*, a Multi-Directional Heuristic Search algorithm that finds the optimal meeting location under different cost functions. MM* generalizes the Meet in the Middle (MM) bidirectional search algorithm to the case of finding an optimal meeting location for multiple agents. Several admissible heuristics are proposed, and experiments demonstrate the benefits of MM*.more » « less
-
In a multi-agent path finding (MAPF) problem, the task is to move a set of agents to their goal locations without conflicts. In the real world, unexpected events may delay some of the agents. In this paper, we therefore study the problem of finding a p-robust solution to a given MAPF problem, which is a solution that succeeds with probability at least p, even though unexpected delays may occur. We propose two methods for verifying that given solutions are p-robust. We also introduce an optimal CBS-based algorithm, called pR-CBS, and a fast suboptimal algorithm, called pR-GCBS, for finding such solutions. Our experiments show that a p-robust solution reduces the number of conflicts compared to optimal, non-robust solutions.more » « less