skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The (Un)Scalability of Informed Heuristic Function Estimation in NP-Hard Search Problems
The A* algorithm is commonly used to solve NP-hard combinatorial optimization problems. When provided with a completely informed heuristic function, A* can solve such problems in time complexity that is polynomial in the solution cost and branching factor. In light of this fact, we examine a line of recent publications that propose fitting deep neural networks to the completely informed heuristic function. We assert that these works suffer from inherent scalability limitations since --- under the assumption of NP P/poly --- such approaches result in either (a) network sizes that scale super-polynomially in the instance sizes or (b) the accuracy of the fitted deep neural networks scales inversely with the instance sizes. Complementing our theoretical claims, we provide experimental results for three representative NP-hard search problems. The results suggest that fitting deep neural networks to informed heuristic functions requires network sizes that grow quickly with the problem instance size. We conclude by suggesting that the research community should focus on scalable methods for integrating heuristic search with machine learning, as opposed to methods relying on informed heuristic estimation.  more » « less
Award ID(s):
2238979
PAR ID:
10498043
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
https://openreview.net/forum?id=JllRdycmLk
Date Published:
Journal Name:
Transactions on Machine Learning Research
ISSN:
2835-8856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Combinatorial optimization problems prevail in engineering and industry. Some are NP-hard and thus become difficult to solve on edge devices due to limited power and computing resources. Quadratic Unconstrained Binary Optimization (QUBO) problem is a valuable emerging model that can formulate numerous combinatorial problems, such as Max-Cut, traveling salesman problems, and graphic coloring. QUBO model also reconciles with two emerging computation models, quantum computing and neuromorphic computing, which can potentially boost the speed and energy efficiency in solving combinatorial problems. In this work, we design a neuromorphic QUBO solver composed of a swarm of spiking neural networks (SNN) that conduct a population-based meta-heuristic search for solutions. The proposed model can achieve about x20 40 speedup on large QUBO problems in terms of time steps compared to a traditional neural network solver. As a codesign, we evaluate the neuromorphic swarm solver on a 40nm 25mW Resistive RAM (RRAM) Compute-in-Memory (CIM) SoC with a 2.25MB RRAM-based accelerator and an embedded Cortex M3 core. The collaborative SNN swarm can fully exploit the specialty of CIM accelerator in matrix and vector multiplications. Compared to previous works, such an algorithm-hardware synergized solver exhibits advantageous speed and energy efficiency for edge devices. 
    more » « less
  2. Quadratic Unconstrained Binary Optimization (QUBO) problem becomes an attractive and valuable optimization problem formulation in that it can easily transform into a variety of other combinatorial optimization problems such as Graph/number Partition, Max-Cut, SAT, Vertex Coloring, TSP, etc. Some of these problems are NP-hard and widely applied in industry and scientific research. Meanwhile, QUBO has been discovered to be compatible with two emerging computing paradigms, neuromorphic computing, and quantum computing, with tremendous potential to speed up future optimization solvers. In this paper, we propose a novel neuromorphic computing paradigm that employs multiple collaborative spiking neural networks to solve QUBO problems. Each SNN conducts a local stochastic gradient descent search and shares the global best solutions periodically to perform a meta-heuristic search for optima. We simulate our model and compare it to a single SNN solver and a mult-SNN solver without collaboration. Through tests on benchmark problems, the proposed method is demonstrated to be more efficient and effective in searching for QUBO optima. Specifically, it exhibits x10 and x15-20 speedup respectively on the multi-SNN solver without collaboration and the single-SNN solver. 
    more » « less
  3. Probabilistic circuits (PCs) such as sum-product networks efficiently represent large multi-variate probability distributions. They are preferred in practice over other probabilistic representations, such as Bayesian and Markov networks, because PCs can solve marginal inference (MAR) tasks in time that scales linearly in the size of the network. Unfortunately, the most probable explanation (MPE) task and its generalization, the marginal maximum-a-posteriori (MMAP) inference task remain NP-hard in these models. Inspired by the recent work on using neural networks for generating near-optimal solutions to optimization problems such as integer linear programming, we propose an approach that uses neural networks to approximate MMAP inference in PCs. The key idea in our approach is to approximate the cost of an assignment to the query variables using a continuous multilinear function and then use the latter as a loss function. The two main benefits of our new method are that it is self-supervised, and after the neural network is learned, it requires only linear time to output a solution. We evaluate our new approach on several benchmark datasets and show that it outperforms three competing linear time approximations: max-product inference, max-marginal inference, and sequential estimation, which are used in practice to solve MMAP tasks in PCs. 
    more » « less
  4. null (Ed.)
    In this work, we systematically examine the application of spatio-temporal splitting heuristics to the Multi-Robot Motion Planning (MRMP) problem in a graph-theoretic setting: a problem known to be NP-hard to optimally solve. Following the divide-and-conquer principle, we design multiple spatial and temporal splitting schemes that can be applied to any existing MRMP algorithm, including integer programming solvers and Enhanced Conflict Based Search, in an orthogonal manner. The combination of a good baseline MRMP algorithm with a proper splitting heuristic proves highly effective, allowing the resolution of problems 10+ times than what is possible previously, as corroborated by extensive numerical evaluations. Notably, spatial partition of problem fusing with the temporal splitting heuristic and the enhanced conflict based search (ECBS) algorithm increases the scalability of ECBS on large and challenging DAO maps by 5–15 folds with negligible impact on solution optimality. 
    more » « less
  5. Feature representations from pre-trained deep neural networks have been known to exhibit excellent generalization and utility across a variety of related tasks. Fine-tuning is by far the simplest and most widely used approach that seeks to exploit and adapt these feature representations to novel tasks with limited data. Despite the effectiveness of fine-tuning, itis often sub-optimal and requires very careful optimization to prevent severe over-fitting to small datasets. The problem of sub-optimality and over-fitting, is due in part to the large number of parameters used in a typical deep convolutional neural network. To address these problems, we propose a simple yet effective regularization method for fine-tuning pre-trained deep networks for the task of k-shot learning. To prevent overfitting, our key strategy is to cluster the model parameters while ensuring intra-cluster similarity and inter-cluster diversity of the parameters, effectively regularizing the dimensionality of the parameter search space. In particular, we identify groups of neurons within each layer of a deep network that shares similar activation patterns. When the network is to be fine-tuned for a classification task using only k examples, we propagate a single gradient to all of the neuron parameters that belong to the same group. The grouping of neurons is non-trivial as neuron activations depend on the distribution of the input data. To efficiently search for optimal groupings conditioned on the input data, we propose a reinforcement learning search strategy using recurrent networks to learn the optimal group assignments for each network layer. Experimental results show that our method can be easily applied to several popular convolutional neural networks and improve upon other state-of-the-art fine-tuning based k-shot learning strategies by more than10% 
    more » « less