skip to main content

Search for: All records

Creators/Authors contains: "Kong, Fansheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    It has long been established that plastic flow in the asthenosphere interacts constantly with the overlying lithosphere and plays a pivotal role in controlling the occurrence of geohazards such as earthquakes and volcanic eruptions. Unfortunately, accurately characterizing the direction and lateral extents of the mantle flow field is notoriously difficult, especially in oceanic areas where deployment of ocean bottom seismometers (OBSs) is expensive and thus rare. In this study, by applying shear wave splitting analyses to a dataset recorded by an OBS array that we deployed between mid-2019 and mid-2020 in the South China Sea (SCS), we show that the dominant mantle flow field has a NNW–SSE orientation, which can be attributed to mantle flow extruded from the Tibetan Plateau by the ongoing Indian–Eurasian collision. In addition, the results suggest that E–W oriented flow fields observed in South China and the Indochina Peninsula do not extend to the central SCS.

    more » « less
  2. Approximately two-thirds of Earth’s outermost shell is composed of oceanic plates that form at spreading ridges and recycle back to Earth’s interior in subduction zones. A series of physical and chemical changes occur in the subducting lithospheric slab as the temperature and pressure increase with depth. In particular, olivine, the most abundant mineral in the upper mantle, progressively transforms to its high-pressure polymorphs near the mantle transition zone, which is bounded by the 410 km and 660 km discontinuities. However, whether olivine still exists in the core of slabs once they penetrate the 660 km discontinuity remains debated. Based on SKS and SKKS shear-wave differential splitting times, we report new evidence that reveals the presence of metastable olivine in the uppermost lower mantle within the ancient Farallon plate beneath the eastern United States. We estimate that the low-density olivine layer in the subducted Farallon slab may compensate the high density of the rest of the slab associated with the low temperature, leading to neutral buoyancy and preventing further sinking of the slab into the deeper part of the lower mantle. 
    more » « less
  3. null (Ed.)
  4. Summary To provide constraints on a number of significant controversial issues related to the structure and dynamics of the Australian continent, we utilize P-to-S receiver functions (RFs) recorded by 182 stations to map the 410 and 660 km discontinuities (d410 and d660, respectively) bordering the mantle transition zone (MTZ). The RFs are stacked in successive circular bins with a radius of 1o under a non-plane wavefront assumption. The d410 and d660 depths obtained using the 1-D IASP91 Earth model show a systematic apparent uplifting of about 15 km for both discontinuities in central and western Australia relative to eastern Australia, as the result of higher seismic wavespeeds in the upper mantle beneath the former area. After correcting the apparent depths using the Australian Seismological Reference Model, the d410 depths beneath the West Australia Craton are depressed by ∼10 km on average relative to the normal depth of 410 km, indicating a positive thermal anomaly of 100 K at the top of the MTZ which could represent a transition from a thinner than normal MTZ beneath the Indian ocean and the normal MTZ beneath central Australia. The abnormally thick MTZ beneath eastern Australia can be adequately explained by subducted cold slabs in the MTZ. A localized normal thickness of the MTZ beneath the Newer Volcanics Province provides supporting evidence of non-mantle-plume mechanism for intraplate volcanic activities in the Australian continent. 
    more » « less
  5. SUMMARY The vast majority of teleseismic XKS (including SKS, SKKS and PKS) shear wave splitting studies interpret the observed splitting parameters (fast orientation and splitting time) based on the assumption of a spatially invariant anisotropy structure in the vicinity of a recording station. For such anisotropy structures the observed splitting parameters are either independent of the arriving azimuth of the seismic ray paths if the medium traversed by the ray paths can be represented by a single layer of anisotropy with a horizontal axis of symmetry (i.e. simple anisotropy), or demonstrate a periodic variation with respect to the arriving azimuth for a more complicated structure of anisotropy (e.g. multiple layers with a horizontal axis of symmetry, or a single layer with a dipping axis). When a recording station is located near the boundary of two or more regions with different anisotropy characteristics, the observed splitting parameters are dependent on the location of the ray piercing points. Such a piercing-point dependence is clearly observed using a total of 360 pairs of XKS splitting parameters at three stations situated near the northeastern edge of the Sichuan Basin in central China. For a given station, the fast orientations differ as much as 90°, and the azimuthal variation of the fast orientations lacks a 90° or 180° periodicity which is expected for double-layered or dipping axis anisotropy. The observed splitting parameters from the three stations are spatially most consistent when they are projected at a depth of ∼250 km, and can be explained by shear strain associated with the absolute plate motion and mantle flow deflected by the cone-shaped lithospheric root of the Sichuan Basin. 
    more » « less
  6. Abstract

    To investigate the effects of a slab edge and varying slab geometry on the mantle flow systems beneath south central Alaska, a total of 971 pairs of teleseismic shear wave (SKS, SKKS, and PKS) and 65 pairs of local S wave splitting parameters (fast orientations and splitting times) are measured using data from the USArray and other networks. The Pacific‐Yakutat slab edge separates two regions with different characteristics of the splitting measurements. The area to the west of the slab edge has greater splitting times and mostly trench parallel fast orientations, and the area to the east is dominated by smaller splitting times and spatially varying fast orientations. The spatial distribution of the splitting parameters and results of anisotropy layering and depth analyses can be explained by a model involving three flow systems. The sub‐slab flow initially entraining with the shallow‐dipping Yakutat slab deflects to a trench‐parallel direction due to slab retreat and an increase in slab dip, and flows northeastward toward the slab edge, where it splits into two branches. The first branch enters the mantle wedge as a toroidal flow and flows southwestward along the slab, and the second branch continues approximately eastward. The flowlines of the toroidal and continued flow systems are approximately orthogonal to each other in the vicinity of the slab edge, producing the observed small splitting times and spatially varying fast orientations.

    more » « less
  7. Abstract

    A total of 10,586P‐to‐Sradial receiver functions recorded by 64 broadband seismic stations were utilized to image the 410 and 660 km discontinuities (d410 and d660, respectively) bordering the mantle transition zone (MTZ) beneath the Sumatra Island, the Malay Peninsula, and the western margin of the South China Sea. The d410 and d660 were imaged by stacking receiver functions in successive circular bins with a radius of 1°, after moveout corrections based on the 1‐D IASP91 Earth model. The resulting apparent depths of the discontinuities exhibit significant and spatially systematic variations. The apparent depths of the d410 and d660 range from 382 to 459 km and 637 to 700 km with an average of 406 ± 13 and 670± 12 km, respectively, while the corresponding values for the MTZ thickness are 217 to 295 km and 261 ± 13 km. Underneath southern Sumatra and adjacent regions, the MTZ is characterized by an uplifted d410 and a depressed d660. While the former is probably caused by the low temperature anomaly, the latter is most likely related to a combination of the low temperature anomaly and dehydration associated with the subducted Australian Plate that has reached at least the d660. In contrast, an abnormally thin MTZ is imaged to the southwest of the Toba Caldera. This observation, when combined with results from previous seismic tomography studies, can be explained by advective thermal upwelling through a slab window.

    more » « less