Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We highlight the recent 5 years of research that contributed to our understanding of the mechanisms of RNA interference (RNAi) in insects. Since its first discovery, RNAi has contributed enormously as a reverse genetic tool for functional genomic studies. RNAi is also being used in therapeutics, as well as agricultural crop and livestock production and protection. Yet, for the wider application of RNAi, improvement of its potency and delivery technologies is needed. A mechanistic understanding of every step of RNAi, from cellular uptake of RNAi trigger molecules to targeted mRNA degradation, is key for developing an efficient strategy to improve RNAi technology. Insects provide an excellent model for studying the mechanism of RNAi due to species‐specific variations in RNAi efficiency. This allows us to perform comparative studies in insect species with different RNAi sensitivity. Understanding the mechanisms of RNAi in different insects can lead to the development of better strategies to improve RNAi and its application to manage agriculturally and medically important insects.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract Apoptosis has been widely studied from mammals to insects. Inhibitor of apoptosis (IAP) protein is a negative regulator of apoptosis. Recent studies suggest thatiapgenes could be excellent targets for RNA interference (RNAi)‐mediated control of insect pests. However, not much is known aboutiapgenes in one of the well‐known insect model species,Tribolium castaneum. The orthologues of fiveiapgenes were identified inT. castaneumby searching its genome at NCBI (https://www.ncbi.nlm.nih.gov/) and UniProt (https://www.uniprot.org/) databases usingDrosophila melanogasterandAedes aegyptiIAP protein sequences as queries. RNAi assays were performed inT. castaneumcell line (TcA) and larvae. The knockdown ofiap1gene induced a distinct apoptotic phenotype in TcA cells and induced 91% mortality inT. castaneumlarvae. Whereas, knockdown ofiap5resulted in a decrease in cell proliferation in TcA cells and developmental defects inT. castaneumlarvae which led to 100% mortality. Knockdown of the other threeiapgenes identified did not cause a significant effect on cells or insects. These data increase our understanding ofiapgenes in insects and provide opportunities for developingiap1andiap5as targets for RNAi‐based insect pest control.more » « less
An official website of the United States government
