skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koren, Ilan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The glory, a striking optical phenomenon seen from space in unpolarized satellite images can be mapped onto the cloud's droplet sizes with a characteristic scale of 10. Such a mapping allows us to infer the mean and variance of the cloud droplets' radius, an important property that has remained elusive and inaccessible to passive unpolarized satellite sensing. Here, we propose a simple and robust polarization‐like differential approach to map the glory's spectral properties to the desired moments of the droplet size distribution. By taking the differences between two spectrally close channels, we reduce multiple scattering contributions and amplify the single‐scattering signal, thus allowing for a simple and rapidly converging map from glory to droplet size distribution. Moreover, the droplet information reflects the upper part of the cloud, adding another sample to the traditional multiple scattering‐based retrievals that reflect droplet properties deeper in the cloud. 
    more » « less
  2. Aerosols and clouds are key components of the marine atmosphere, impacting the Earth’s radiative budget with a net cooling effect over the industrial era that counterbalances greenhouse gas warming, yet with an uncertain amplitude. Here we report recent advances in our understanding of how open ocean aerosol sources are modulated by ocean biogeochemistry and how they, in turn, shape cloud coverage and properties. We organize these findings in successive steps from ocean biogeochemical processes to particle formation by nucleation and sea spray emissions, further particle growth by condensation of gases, the potential to act as cloud condensation nuclei or ice nucleating particles, and finally, their effects on cloud formation, optical properties, and life cycle. We discuss how these processes may be impacted in a warming climate and the potential for ocean biogeochemistry—climate feedbacks through aerosols and clouds. 
    more » « less
  3. Abstract Glory is a beautiful optical phenomenon observed in an atmosphere as concentric colored rings reflected by clouds or fog around an antisolar point. Here we report that true color glories, although faint, are discernible in raw unpolarized satellite images by a naked eye on a daily basis, thus constituting a large and untapped reservoir of cloud data for which a simple diffraction-like approximation links cloud droplet diameter and variance to the glory’s structure. 
    more » « less
  4. A stochastic framework is exhibited to produce systematically a broadband response from periodic solutions of time-delay systems. 
    more » « less
  5. Abstract. Record-breaking statistics are combined here with ageographic mode of exploration to introduce a record-breaking map. Weexamine time series of sea surface temperature (SST) values and show thathigh SST records have been broken far more frequently than the expected rate for a trend-free random variable (TFRV) over the vast majority of oceans (83 % of the grid cells). This, together with the asymmetry between highand low records and their deviation from a TFRV, indicates SST warming overmost oceans, obtained using a distribution-independent, robust, andsimple-to-use method. The spatial patterns of this warming are coherent andreveal islands of cooling, such as the “cold blob” in the North Atlantic and a surprising elliptical area in the Southern Ocean, near the Ross Sea gyre, not previously reported. The method was also applied to evaluate a global climate model (GCM), which reproduced the observed records during the study period. The distribution of records from the GCM pre-industrial (PI) controlrun samples was similar to the one from a TFRV, suggesting that thecontribution of a suitably constrained internal variability to the observedrecord-breaking trends is negligible. Future forecasts show striking SSTtrends, with even more frequent high records and less frequent low records. 
    more » « less
  6. null (Ed.)
  7. Abstract Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-to-night modulation of bubble-bursting dynamics as a possible cause of the SSA cycle. 
    more » « less