skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Korolova, Aleksandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bun, Mark (Ed.)
    We consider the setting where a user with sensitive features wishes to obtain a recommendation from a server in a differentially private fashion. We propose a "multi-selection" architecture where the server can send back multiple recommendations and the user chooses one from these that matches best with their private features. When the user feature is one-dimensional - on an infinite line - and the accuracy measure is defined w.r.t some increasing function π”₯(.) of the distance on the line, we precisely characterize the optimal mechanism that satisfies differential privacy. The specification of the optimal mechanism includes both the distribution of the noise that the user adds to its private value, and the algorithm used by the server to determine the set of results to send back as a response. We show that Laplace is an optimal noise distribution in this setting. Furthermore, we show that this optimal mechanism results in an error that is inversely proportional to the number of results returned when the function π”₯(.) is the identity function. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Recently, Meta has shifted towards AI-mediated ad targeting mechanisms that do not require advertisers to provide detailed targeting criteria. The shift is likely driven by excitement over AI capabilities as well as the need to address new data privacy policies and targeting changes agreed upon in civil rights settlements. At the same time, in response to growing public concern about the harms of targeted advertising, Meta has touted their ad preference controls as an effective mechanism for users to exert control over the advertising they see. Furthermore, Meta markets their Why this ad targeting explanation as a transparency tool that allows users to understand the reasons for seeing particular ads and inform their actions to control what ads they see in the future. Our study evaluates the effectiveness of Meta's See less ad control, as well as the actionability of ad targeting explanations following the shift to AI-mediated targeting. We conduct a large-scale study, randomly assigning participants the intervention of marking See less to either Body Weight Control or Parenting topics, and collecting the ads Meta shows to participants and their targeting explanations before and after the intervention. We find that utilizing the See less ad control for the topics we study does not significantly reduce the number of ads shown by Meta on these topics, and that the control is less effective for some users whose demographics are correlated with the topic. Furthermore, we find that the majority of ad targeting explanations for local ads made no reference to location-specific targeting criteria, and did not inform users why ads related to the topics they requested to See less of continued to be delivered. We hypothesize that the poor effectiveness of controls and lack of actionability and comprehensiveness in explanations are the result of the shift to AI-mediated targeting, for which explainability and transparency tools have not yet been developed by Meta. Our work thus provides evidence for the need of new methods for transparency and user control, suitable and reflective of how the increasingly complex and AI-mediated ad delivery systems operate. 
    more » « less
    Free, publicly-accessible full text available October 17, 2025
  3. Detailed targeting of advertisements has long been one of the core offerings of online platforms. Unfortunately, malicious advertisers have frequently abused such targeting features, with results that range from violating civil rights laws to driving division, polarization, and even social unrest. Platforms have often attempted to mitigate this behavior by removing targeting attributes deemed problematic, such as inferred political leaning, religion, or ethnicity. In this work, we examine the effectiveness of these mitigations by collecting data from political ads placed on Facebook in the lead up to the 2022 U.S. midterm elections. We show that major political advertisers circumvented these mitigations by targeting proxy attributes: seemingly innocuous targeting criteria that closely correspond to political and racial divides in American society. We introduce novel methods for directly measuring the skew of various targeting criteria to quantify their effectiveness as proxies, and then examine the scale at which those attributes are used. Our findings have crucial implications for the ongoing discussion on the regulation of political advertising and emphasize the urgency for increased transparency. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  4. Free, publicly-accessible full text available July 1, 2025
  5. We consider the setting where a user with sensitive features wishes to obtain a recommendation from a server in a differentially private fashion. We propose a ``multi-selection'' architecture where the server can send back multiple recommendations and the user chooses one from these that matches best with their private features. When the user feature is one-dimensional -- on an infinite line -- and the accuracy measure is defined w.r.t some increasing function π”₯(.) of the distance on the line, we precisely characterize the optimal mechanism that satisfies differential privacy. The specification of the optimal mechanism includes both the distribution of the noise that the user adds to its private value, and the algorithm used by the server to determine the set of results to send back as a response and further show that Laplace is an optimal noise distribution. We further show that this optimal mechanism results in an error that is inversely proportional to the number of results returned when the function π”₯(.) is the identity function. 
    more » « less
    Free, publicly-accessible full text available July 19, 2025
  6. Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Oliver, Nuria; Scarlett, Jonathan; Berkenkamp, Felix (Ed.)
    Rankings are ubiquitous across many applications, from search engines to hiring committees. In practice, many rankings are derived from the output of predictors. However, when predictors trained for classification tasks have intrinsic uncertainty, it is not obvious how this uncertainty should be represented in the derived rankings. Our work considers ranking functions: maps from individual predictions for a classification task to distributions over rankings. We focus on two aspects of ranking functions: stability to perturbations in predictions and fairness towards both individuals and subgroups. Not only is stability an important requirement for its own sake, but β€” as we show β€” it composes harmoniously with individual fairness in the sense of Dwork et al. (2012). While deterministic ranking functions cannot be stable aside from trivial scenarios, we show that the recently proposed uncertainty aware (UA) ranking functions of Singh et al. (2021) are stable. Our main result is that UA rankings also achieve group fairness through successful composition with multiaccurate or multicalibrated predictors. Our work demonstrates that UA rankings naturally interpolate between group and individual level fairness guarantees, while simultaneously satisfying stability guarantees important whenever machine-learned predictions are used. 
    more » « less
  7. The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques. 
    more » « less