skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kosakowski, Alekzander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present an analysis of new and archival data to the 20.506 minute LISA verification binary J052610.42+593445.32 (J0526+5934). Our joint spectroscopic and photometric analysis finds that the binary contains an unseenM1= 0.89 ± 0.11MCO-core white dwarf primary with anM2= 0.38 ± 0.07Mpost-core-burning subdwarf, or low-mass white dwarf, companion. Given the short orbital period and relatively large total binary mass, we find that LISA will detect this binary with signal-to-noise ratio 44 after 4 yr of observations. J0526+5934 is expected to merge within 1.8 ± 0.3 Myr and likely result in a D6scenario Type Ia supernova or form a He-rich star that will evolve into a massive single white dwarf.

     
    more » « less
  2. ABSTRACT

    We report the discovery of spectroscopic variations in the magnetic DBA white dwarf SDSS J091016.43+210554.2. Follow-up time-resolved spectroscopy at the Apache Point Observatory (APO) and the MMT show significant variations in the H absorption lines over a rotation period of 7.7 or 11.3 h. Unlike recent targets that show similar discrepancies in their H and He line profiles, such as GD 323 and Janus (ZTF J203349.8+322901.1), SDSS J091016.43+210554.2 is confirmed to be magnetic, with a field strength derived from Zeeman-split H and He lines of B ≈ 0.5 MG. Model fits using a H and He atmosphere with a constant abundance ratio across the surface fail to match our time-resolved spectra. On the other hand, we obtain excellent fits using magnetic atmosphere models with varying H/He surface abundance ratios. We use the oblique rotator model to fit the system geometry. The observed spectroscopic variations can be explained by a magnetic inhomogeneous atmosphere where the magnetic axis is offset from the rotation axis by β = 52°, and the inclination angle between the line of sight and the rotation axis is i = 13–16°. This magnetic white dwarf offers a unique opportunity to study the effect of the magnetic field on surface abundances. We propose a model where H is brought to the surface from the deep interior more efficiently along the magnetic field lines, thus producing H polar caps.

     
    more » « less
  3. Abstract

    We present the results from our ongoing spectroscopic survey targeting low-mass white dwarf binaries, focusing on the southern sky. We used a Gaia DR2- and eDR3-based selection and identified 28 new binaries, including 19 new extremely low-mass (ELM) white dwarfs, one short period, likely eclipsing, DABZ, and two potential LISA binaries. We present the orbital and atmospheric parameters for each new binary based on our spectroscopic follow up. Four of our new binaries show periodic photometric variability in TESS 2 minutes cadence data, including one new eclipsing double-lined spectroscopic binary. Three others show periodic photometric variability in ZTF, including one new eclipsing binary. We provide estimates for the inclinations and scaled component radii for these ZTF variables, based on light-curve modeling of our high-speed photometric follow-up observations. Our observations have increased the sample of ELM Survey binaries identified in the southern sky to 41, an increase of 64%. Future time domain surveys, such as BlackGEM and the Vera C. Rubin Observatory Legacy Survey of Space and Time, will efficiently identify photometric variables in the southern sky and significantly increase the population of southern sky low-mass white dwarf binaries, leading to a more complete all-sky population of these systems.

     
    more » « less
  4. ABSTRACT

    We search for merger products among the 25 most massive white dwarfs in the Montreal White Dwarf Database 100 pc sample through follow-up spectroscopy and high-cadence photometry. We find an unusually high fraction, 40 per cent, of magnetic white dwarfs among this population. In addition, we identify four outliers in transverse velocity and detect rapid rotation in five objects. Our results show that $56^{+9}_{-10}$ per cent of the $M\approx 1.3\, {\rm M}_{\odot }$ ultramassive white dwarfs form through mergers. This fraction is significantly higher than expected from the default binary population synthesis calculations using the α prescription (with αλ = 2), and provides further support for efficient orbital shrinkage, such as with low values of the common-envelope efficiency.

     
    more » « less
  5. Abstract

    We present the discovery of 17 double white dwarf (WD) binaries from our ongoing search for extremely low mass (ELM) < 0.3MWDs, objects that form from binary evolution. Gaia parallax provides a new means of target selection that we use to evaluate our original ELM Survey selection criteria. Cross-matching the Gaia and Sloan Digital Sky Survey (SDSS) catalogs, we identify an additional 36 ELM WD candidates with 17 <g< 19 mag and within the 3σuncertainties of our original color selection. The resulting discoveries imply the ELM Survey sample was 90% complete in the color range −0.4 < (gr)0< −0.1 mag (approximately 9000 K <Teff< 22,000 K). Our observations complete the sample in the SDSS footprint. Two newly discovered binaries, J123950.370−204142.28 and J232208.733+210352.81, have orbital periods of 22.5 and 32 minutes, respectively, and are future Laser Interferometer Space Antenna gravitational-wave sources.

     
    more » « less
  6. Abstract

    We report the discovery of an isolated white dwarf with a spin period of 70 s. We obtained high-speed photometry of three ultramassive white dwarfs within 100 pc and discovered significant variability in one. SDSS J221141.80+113604.4 is a 1.27M(assuming a CO core) magnetic white dwarf that shows 2.9% brightness variations in the BG40 filter with a 70.32 ± 0.04 s period, becoming the fastest spinning isolated white dwarf currently known. A detailed model atmosphere analysis shows that it has a mixed hydrogen and helium atmosphere with a dipole field strength ofBd= 15 MG. Given its large mass, fast rotation, strong magnetic field, unusual atmospheric composition, and relatively large tangential velocity for its cooling age, J2211+1136 displays all of the signatures of a double white dwarf merger remnant. Long-term monitoring of the spin evolution of J2211+1136 and other fast-spinning isolated white dwarfs opens a new discovery space for substellar and planetary mass companions around white dwarfs. In addition, the discovery of such fast rotators outside of the ZZ Ceti instability strip suggests that some should also exist within the strip. Hence, some of the monoperiodic variables found within the instability strip may be fast-spinning white dwarfs impersonating ZZ Ceti pulsators.

     
    more » « less
  7. null (Ed.)
    ABSTRACT We present the Apache Point Observatory BG40 broad-band and simultaneous Gemini r-band and i-band high-speed follow-up photometry observations and analysis of the 40.5-min period eclipsing detached double-degenerate binary SDSS J082239.54+304857.19. Our APO data spans over 318 d and includes 13 primary eclipses, from which we precisely measure the system’s orbital period and improve the time of mid-eclipse measurement. We fit the light curves for each filter individually and show that this system contains a low-mass DA white dwarf with radius RA = 0.031 ± 0.006 R⊙ and a RB = 0.013 ± 0.005 R⊙ companion at an inclination of i = 87.7 ± 0.2○. We use the best-fitting eclipsing light curve model to estimate the temperature of the secondary star as Teff = 5200 ± 100 K. Finally, while we do not record significant offsets to the expected time of mid-eclipse caused by the emission of gravitational waves with our 1-yr baseline, we show that a 3σ significant measurement of the orbital decay due to gravitational waves will be possible in 2023, at which point the eclipse will occur about 8  s earlier than expected. 
    more » « less