skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: The merger fraction of ultramassive white dwarfs
ABSTRACT We search for merger products among the 25 most massive white dwarfs in the Montreal White Dwarf Database 100 pc sample through follow-up spectroscopy and high-cadence photometry. We find an unusually high fraction, 40 per cent, of magnetic white dwarfs among this population. In addition, we identify four outliers in transverse velocity and detect rapid rotation in five objects. Our results show that $$56^{+9}_{-10}$$ per cent of the $$M\approx 1.3\, {\rm M}_{\odot }$$ ultramassive white dwarfs form through mergers. This fraction is significantly higher than expected from the default binary population synthesis calculations using the α prescription (with αλ = 2), and provides further support for efficient orbital shrinkage, such as with low values of the common-envelope efficiency.  more » « less
Award ID(s):
2205736 1906379
PAR ID:
10381877
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2341-2353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Magnetic fields can play an important role in stellar evolution. Among white dwarfs, the most common stellar remnant, the fraction of magnetic systems is more than 20 per cent. The origin of magnetic fields in white dwarfs, which show strengths ranging from 40 kG to hundreds of MG, is still a topic of debate. In contrast, only one magnetic hot subdwarf star has been identified out of thousands of known systems. Hot subdwarfs are formed from binary interaction, a process often associated with the generation of magnetic fields, and will evolve to become white dwarfs, which makes the lack of detected magnetic hot subdwarfs a puzzling phenomenon. Here we report the discovery of three new magnetic hot subdwarfs with field strengths in the range 300–500 kG. Like the only previously known system, they are all helium-rich O-type stars (He-sdOs). We analysed multiple archival spectra of the three systems and derived their stellar properties. We find that they all lack radial velocity variability, suggesting formation via a merger channel. However, we derive higher than typical hydrogen abundances for their spectral type, which are in disagreement with current model predictions. Our findings suggest a lower limit to the magnetic fraction of hot subdwarfs of $$0.147^{+0.143}_{-0.047}$$ per cent, and provide evidence for merger-induced magnetic fields which could explain white dwarfs with field strengths of 50–150 MG, assuming magnetic flux conservation. 
    more » « less
  2. Abstract We present a detailed model atmosphere analysis of massive white dwarfs withM> 0.9MandTeff≥ 11,000 K in the Montreal White Dwarf Database 100 pc sample and the Pan-STARRS footprint. We obtained follow-up optical spectroscopy of 109 objects with no previous spectral classification in the literature. Our spectroscopic follow-up is now complete for all 204 objects in the sample. We find 118 normal DA white dwarfs, including 45 massive DAs near the ZZ Ceti instability strip. There are no normal massive DBs: the six DBs in the sample are strongly magnetic and/or rapidly rotating. There are 20 massive DQ white dwarfs in our sample, and all are found in the crystallization sequence. In addition, 66 targets are magnetic (32% of the sample). We use magnetic white dwarf atmosphere models to constrain the field strength and geometry using offset dipole models. We also use magnetism, kinematics, and rotation measurements to constrain the fraction of merger remnant candidates among this population. The merger fraction of this sample increases from 25% for 0.9–1Mwhite dwarfs to 49% for 1.2–1.3M. However, this fraction is as high as 78 7 + 4 % for 1.1–1.2Mwhite dwarfs. Previous works have demonstrated that 5%–9% of high-mass white dwarfs stop cooling for ∼8 Gyr due to the22Ne distillation process, which leads to an overdensity of Q-branch stars in the solar neighborhood. We demonstrate that the overabundance of the merger remnant candidates in our sample is likely due to the same process. 
    more » « less
  3. ABSTRACT We present radial velocity observations of four binary white dwarf candidates identified through their overluminosity. We identify two new double-lined spectroscopic binary systems, WD 0311–649 and WD 1606+422, and constrain their orbital parameters. WD 0311–649 is a 17.7 h period system with a mass ratio of 1.44 ± 0.06 and WD 1606+422 is a 20.1 h period system with a mass ratio of 1.33 ± 0.03. An additional object, WD 1447–190, is a 43 h period single-lined white dwarf binary, whereas WD 1418–088 does not show any significant velocity variations over time-scales ranging from minutes to decades. We present an overview of the 14 overluminous white dwarfs that were identified by Bédard et al., and find the fraction of double- and single-lined systems to be both 31 per cent. However, an additional 31 per cent of these overluminous white dwarfs do not show any significant radial velocity variations. We demonstrate that these must be in long-period binaries that may be resolved by Gaia astrometry. We also discuss the overabundance of single low-mass white dwarfs identified in the SPY survey, and suggest that some of those systems are also likely long-period binary systems of more massive white dwarfs. 
    more » « less
  4. Abstract Four years after the discovery of a unique DAQ white dwarf with a hydrogen-dominated and carbon-rich atmosphere, we report the discovery of four new DAQ white dwarfs, including two that were not recognized properly in the literature. We find all five DAQs in a relatively narrow mass and temperature range ofM= 1.14–1.19MandTeff= 13,000–17,000 K. In addition, at least two show photometric variations due to rapid rotation with ≈10 minute periods. All five are also kinematically old, but appear photometrically young, with estimated cooling ages of about 1 Gyr based on standard cooling tracks, and their masses are roughly twice the mass of the most common white dwarfs in the solar neighborhood. These characteristics are smoking gun signatures of white dwarf merger remnants. Comparing the DAQ sample with warm DQ white dwarfs, we demonstrate that there is a range of hydrogen abundances among the warm DQ population and that the distinction between DAQ and warm DQ white dwarfs is superficial. We discuss the potential evolutionary channels for the emergence of the DAQ subclass, suggesting that DAQ white dwarfs are trapped on the crystallization sequence and may remain there for a significant fraction of the Hubble time. 
    more » « less
  5. Abstract We present a spectroscopic survey of 248 white dwarf candidates within 40 pc of the Sun; of these 244 are in the Southern hemisphere. Observations were performed mostly with the Very Large Telescope (X-Shooter) and Southern Astrophysical Research Telescope. Almost all candidates were selected from Gaia Data Release 3 (DR3). We find a total of 246 confirmed white dwarfs, 209 of which had no previously published spectra, and two main-sequence star contaminants. Of these, 100 white dwarfs display hydrogen Balmer lines, 69 have featureless spectra, and two show only neutral helium lines. Additionally, 14 white dwarfs display traces of carbon, while 37 have traces of other elements that are heavier than helium. We observe 35 magnetic white dwarfs through the detection of Zeeman splitting of their hydrogen Balmer or metal spectral lines. High spectroscopic completeness (> 97 per cent) has now been reached, such that we have 1058 confirmed Gaia DR3 white dwarfs out of 1083 candidates within 40 pc of the Sun at all declinations. 
    more » « less