skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kostic, Zoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 6, 2026
  2. Free, publicly-accessible full text available December 4, 2025
  3. Free, publicly-accessible full text available October 11, 2025
  4. Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS's inaccuracy, however, causes them to veer off track, run into obstacles, and struggle to reach precise destinations. While prior work has made precise navigation possible indoors via hardware installations, enabling this outdoors remains a challenge. Interestingly, many outdoor environments are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing existing street cameras for outdoor navigation. Our community-driven approach considers both technical and sociotechnical concerns through engagements with various stakeholders: BLV users, residents, business owners, and Community Board leadership. The resulting system, StreetNav, processes a camera's video feed using computer vision and gives BLV pedestrians real-time navigation assistance. Our evaluations show that StreetNav guides users more precisely than GPS, but its technical performance is sensitive to environmental occlusions and distance from the camera. We discuss future implications for deploying such systems at scale 
    more » « less
  5. Social distancing is an effective public health tool to reduce the spread of respiratory pandemics such as COVID-19. To analyze compliance with social distancing policies, we design two video-based pipelines for social distancing analysis, namely, Auto-SDA and B-SDA. Auto-SDA (Automated video-based Social Distancing Analyzer) is designed to measure social distancing using street-level cameras. To avoid privacy concerns of using street-level cameras, we further develop B-SDA (Bird’s eye view Social Distancing Analyzer), which uses bird’s eye view cameras, thereby preserving pedestrian’s privacy. We used the COSMOS testbed deployed in West Harlem, New York City, to evaluate both pipelines. In particular, Auto-SDA and B-SDA are applied on videos recorded by two of COSMOS cameras deployed on the 2nd floor (street-level) and 12th floor (bird’s eye view) of Columbia University’s Mudd building, looking at 120th St. and Amsterdam Ave. intersection, New York City. Videos are recorded before and during the peak of the pandemic, as well as after the vaccines became broadly available. The results represent the impact of social distancing policies on pedestrians’ social behavior. For example, the analysis shows that after the lockdown, less than 55% of the pedestrians failed to adhere to the social distancing policies, whereas this percentage increased to 65% after the vaccines’ availability. Moreover, after the lockdown, 0-20% of the pedestrians were affiliated with a social group, compared to 10-45% once the vaccines became available. The results also show that the percentage of face-to-face failures has decreased from 42.3% (pre-pandemic) to 20.7%(after the lockdown). 
    more » « less
  6. Social distancing can reduce the infection rates in respiratory pandemics such as COVID-19. Traffic intersections are particularly suitable for monitoring and evaluation of social distancing behavior in metropolises. Hence, in this paper, we propose and evaluate a real-time privacy-preserving social distancing analysis system (B-SDA), which uses bird’s-eye view video recordings of pedestrians who cross traffic intersections. We devise algorithms for video pre-processing, object detection, and tracking which are rooted in the known computer-vision and deep learning techniques, but modified to address the problem of detecting very small objects/pedestrians captured by a highly elevated camera. We propose a method for incorporating pedestrian grouping for detection of social distancing violations, which achieves 0.92 F1 score. B-SDA is used to compare pedestrian behavior in pre-pandemic and during-pandemic videos in uptown Manhattan, showing that the social distancing violation rate of 15.6% during the pandemic is notably lower than 31.4% prepandemic baseline. Keywords—Social distancing, Object detection, Smart city, Testbeds 
    more » « less