Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We analyzed the spike protein S1/S2 cleavage of selected strains of a prototype coronavirus, mouse hepatitis virus (MHV) by the cellular protease furin, in order to understand the structural requirements underlying the sequence selectivity of the scissile segment. The probability of cleavage of selected MHV strains was first evaluated from furin cleavage scores predicted by the ProP computer software, and then cleavage was measured experimentally with a fluorogenic peptide cleavage assay consisting of S1/S2 peptide mimics and purified furin. We found that in vitro cleavability varied across MHV strains in line with predicted results—but with the notable exception of MHV-A59, which was not cleaved despite a high score predicted for its sequence. Using the known X-Ray structure of furin in complex with a substrate-like inhibitor as an initial structural reference, we carried out molecular dynamics (MD) simulations to learn the modes of binding of the peptides in the furin active site, and the suitability of the complex for initiation of the enzymatic cleavage. We identified the 3D structural requirements of the furin active site configuration that enable bound peptides to undergo cleavage, and the way in which the various strains tested experimentally are fulfilling these requirements. We find that despite some flexibility in the organization of the peptide bound to the active site of the enzyme, the presence of a histidine at P2 of MHV-A59 fails to properly orient the sidechain of His194 of the furin catalytic triad and therefore produces a distortion that renders the peptide/complex structural configuration in the active site incompatible with requirements for cleavage initiation. The Ser/Thr in P1 of MHV-2 and MHV-S has a similar effect of distorting the conformation of the furin active site residues produced by the elimination of the canonical salt-bridge formed by arginine in P1 position. This work informs a study of coronavirus infection and pathogenesis with respect to the function of the viral spike protein, and suggests an important process of viral adaptation and evolution within the spike S1/S2 structural loop.more » « lessFree, publicly-accessible full text available February 1, 2025
-
Abstract TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.
-
In response to acidic pH, the widely expressed proton-activated chloride (PAC) channel opens and conducts anions across cellular membranes. By doing so, PAC plays an important role in both cellular physiology (endosome acidification) and diseases associated with tissue acidosis (acid-induced cell death). Despite the available structural information, how proton binding in the extracellular domain (ECD) leads to PAC channel opening remains largely unknown. Here, through comprehensive mutagenesis and electrophysiological studies, we identified several critical titratable residues, including two histidine residues (H130 and H131) and an aspartic acid residue (D269) at the distal end of the ECD, together with the previously characterized H98 at the transmembrane domain–ECD interface, as potential pH sensors for human PAC. Mutations of these residues resulted in significant changes in pH sensitivity. Some combined mutants also exhibited large basal PAC channel activities at neutral pH. By combining molecular dynamics simulations with structural and functional analysis, we further found that the β12 strand at the intersubunit interface and the associated “joint region” connecting the upper and lower ECDs allosterically regulate the proton-dependent PAC activation. Our studies suggest a distinct pH-sensing and gating mechanism of this new family of ion channels sensitive to acidic environment.more » « less
-
Intracellular transport of chloride by members of the CLC transporter family involves a coupled exchange between a Cl− anion and a proton (H+), which makes the transport function dependent on ambient pH. Transport activity peaks at pH 4.5 and stalls at neutral pH. However, a structure of the WT protein at acidic pH is not available, making it difficult to assess the global conformational rearrangements that support a pH-dependent gating mechanism. To enable modeling of the CLC-ec1 dimer at acidic pH, we have applied molecular dynamics simulations (MD) featuring a new force field modification scheme—termed an Equilibrium constant pH approach (ECpH). The ECpH method utilizes linear interpolation between the force field parameters of protonated and deprotonated states of titratable residues to achieve a representation of pH-dependence in a narrow range of physiological pH values. Simulations of the CLC-ec1 dimer at neutral and acidic pH comparing ECpH-MD to canonical MD, in which the pH-dependent protonation is represented by a binary scheme, substantiates the better agreement of the conformational changes and the final model with experimental data from NMR, cross-link and AFM studies, and reveals structural elements that support the gate-opening at pH 4.5, including the key glutamates Gluin and Gluex.more » « less