skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kou‐Giesbrecht, Sian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 17, 2026
  2. Abstract Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emissions while ensuring food security within planetary boundaries. However, climate change might also interact with management practices to alter N2O emission and emission factors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we developed a new hybrid modeling framework that integrates a machine learning model with an ensemble of eight process‐based models to project EFs under different climate and nitrogen policy scenarios. Our findings reveal that EFs are dynamically modulated by environmental changes, including climate, soil properties, and nitrogen management practices. Under low‐ambition nitrogen regulation policies, EF would increase from 1.18%–1.22% in 2010 to 1.27%–1.34% by 2050, representing a relative increase of 4.4%–11.4% and exceeding the IPCC tier‐1 EF of 1%. This trend is particularly pronounced in tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%–0.35% (relative increase of 11.9%–17%). In contrast, high‐ambition policies have the potential to mitigate the increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, our results demonstrate that global EFs are expected to continue rising due to warming and regional drying–wetting cycles, even in the absence of changes in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. This hybrid modeling framework offers a computationally efficient approach to projecting future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating socio‐economic assessments and policy‐making efforts. 
    more » « less
  3. This dataset contains yearly projections of emission factors (EFs) for fertilizer-induced direct nitrous oxide (N2O) emissions across the global agricultural lands with a spatial resolution of 0.5° × 0.5° from 1990 to 2050. Emission factor (EF) is defined as the amount of N2O emitted per unit of nitrogen (N) fertilizer applied, expressed in percentage (%). They are developed from a hybrid modeling framework, Dym-EF (more details can be found in Li et al., 2024). The framework integrates machine learning approaches with an ensemble of eight process-based models from The Global N2O Model Intercomparison Project phase 2 (NMIP2) to learn the relationship between EF dynamics and multiple environmental factors, such as climate, soil properties, nitrogen fertilizer input, and other agricultural management practices. After the hybrid modeling framework was extensively validated, we applied it to develop EF projections under different nitrogen management policies and climate change scenarios, including future climate data from 37 Global Climate Models (GCMs). The annual median and standard deviation (SD) of EF under each scenario represent the projection median and variability derived from climate input data using the 37 GCMs.The dataset filenames follow the structure: 'Scenario'_'N regulation'_'Median/SD', where 'Scenario' corresponds to the different nitrogen management and climate scenarios (e.g., INMS1, INMS2, and INMS3), 'N regulation' corresponds to the different nitrogen management levels (e.g., BAU, LowNRegul, and MedNRegul), and 'Median/SD' indicates whether the file contains the median (Median) or standard deviation (SD) of the projections. All relevant data and further details can be found in the supplementary materials and the cited references.INMS1: Business-as-usual, Land use regulation: Medium, Diet: Meat & dairy-rich, Ambition level: LowINMS2: Low-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: LowINMS3: Medium-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: ModerateINMS4: High-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: HighINMS5: Best-case, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighINMS6: Best-case “Plus”, Land use regulation: Strong, Diet: Ambitious diet shift and food-loss/waste reductions, Ambition level: HighINMS7: Bioenergy, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighWe developed this data using the “ranger” package in R 4.1.1, which is accessible at https://cran.r-project.org/web/packages/ranger/. The optimization of the two hyperparameters (ntree and mtry) was performed using the ‘caret’ package, available at https://topepo.github.io/caret/.This database is developed by Li, L., C. Lu, W. Winiwarter, H. Tian, J. Canadell, A. Ito, A.K. Jain, S. Kou-Giesbrecht, S. Pan, N. Pan, H. Shi, Q. Sun, N. Vuichard, S. Ye., S. Zaehle, Q. Zhu. Enhanced nitrous oxide emission factors due to climate change increase the mitigation challenge in the agricultural sector Global Change Biology (In Press) 
    more » « less
  4. Abstract Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone‐depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O‐depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre‐industrial periods. Models show general agreement on the seasonal phasing of zonal‐average N2O fluxes for most sites, but seasonal peak‐to‐peak amplitudes differ several‐fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface‐troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre‐industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport‐chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon‐nitrogen cycles under ongoing global warming. 
    more » « less
  5. Naik, Sushanta Kumar (Ed.)
    Allometric equations are often used to estimate plant biomass allocation to different tissue types from easier-to-measure quantities. Biomass allocation, and thus allometric equations, often differs by species and sometimes varies with nutrient availability. We measured biomass components for five nitrogen-fixing tree species ( Robinia pseudoacacia , Gliricidia sepium , Casuarina equisetifolia , Acacia koa , Morella faya ) and three non-fixing tree species ( Betula nigra , Psidium cattleianum , Dodonaea viscosa ) grown in field sites in New York and Hawaii for 4–5 years and subjected to four fertilization treatments. We measured total aboveground, foliar, main stem, secondary stem, and twig biomass in all species, and belowground biomass in Robinia pseudoacacia and Betula nigra , along with basal diameter, height, and canopy dimensions. The individuals spanned a wide size range (<1–16 cm basal diameter; 0.24–8.8 m height). For each biomass component, aboveground biomass, belowground biomass, and total biomass, we determined the following four allometric equations: the most parsimonious (lowest AIC) overall, the most parsimonious without a fertilization effect, the most parsimonious without canopy dimensions, and an equation with basal diameter only. For some species, the most parsimonious overall equation included fertilization effects, but fertilization effects were inconsistent across fertilization treatments. We therefore concluded that fertilization does not clearly affect allometric relationships in these species, size classes, and growth conditions. Our best-fit allometric equations without fertilization effects had the following R 2 values: 0.91–0.99 for aboveground biomass (the range is across species), 0.95 for belowground biomass, 0.80–0.96 for foliar biomass, 0.94–0.99 for main stem biomass, 0.77–0.98 for secondary stem biomass, and 0.88–0.99 for twig biomass. Our equations can be used to estimate overall biomass and biomass of tissue components for these size classes in these species, and our results indicate that soil fertility does not need to be considered when using allometric relationships for these size classes in these species. 
    more » « less
  6. Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023). 
    more » « less
  7. Abstract Symbiotic nitrogen fixation (SNF) is a key ecological process whose impact depends on the strategy of SNF regulation—the degree to which rates of SNF change in response to limitation by N versus other resources. SNF that is obligate or exhibits incomplete downregulation can result in excess N fixation, whereas a facultative SNF strategy does not. We hypothesized that tree‐based SNF strategies differed by latitude (tropical vs. temperate) and symbiotic type (actinorhizal vs. rhizobial). Specifically, we expected tropical rhizobial symbioses to display strongly facultative SNF as an explanation of their success in low‐latitude forests. In this study we used15N isotope dilution field experiments in New York, Oregon, and Hawaii to determine SNF strategies in six N‐fixing tree symbioses. Nitrogen fertilization with +10 and +15 g N m−2 year−1for 4–5 years alleviated N limitation in all taxa, paving the way to determine SNF strategies. Contrary to our hypothesis, all six of the symbioses we studied sustained SNF even at high N.Robinia pseudoacacia(temperate rhizobial) fixed 91% of its N (%Ndfa) in controls, compared to 64% and 59% in the +10 and +15 g N m−2 year−1treatments. ForAlnus rubra(temperate actinorhizal), %Ndfawas 95%, 70%, and 60%. For the tropical species, %Ndfawas 86%, 80%, and 82% forGliricidia sepium(rhizobial); 79%, 69%, and 67% forCasuarina equisetifolia(actinorhizal); 91%, 42%, and 67% forAcacia koa(rhizobial); and 60%, 51%, and 19% forMorella faya(actinorhizal). Fertilization with phosphorus did not stimulate tree growth or SNF. These results suggest that the latitudinal abundance distribution of N‐fixing trees is not caused by a shift in SNF strategy. They also help explain the excess N in many forests where N fixers are common. 
    more » « less