skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global dynamic emission factors for estimating direct nitrous oxide emissions associated with synthetic fertilizer inputs under different scenarios
This dataset contains yearly projections of emission factors (EFs) for fertilizer-induced direct nitrous oxide (N2O) emissions across the global agricultural lands with a spatial resolution of 0.5° × 0.5° from 1990 to 2050. Emission factor (EF) is defined as the amount of N2O emitted per unit of nitrogen (N) fertilizer applied, expressed in percentage (%). They are developed from a hybrid modeling framework, Dym-EF (more details can be found in Li et al., 2024). The framework integrates machine learning approaches with an ensemble of eight process-based models from The Global N2O Model Intercomparison Project phase 2 (NMIP2) to learn the relationship between EF dynamics and multiple environmental factors, such as climate, soil properties, nitrogen fertilizer input, and other agricultural management practices. After the hybrid modeling framework was extensively validated, we applied it to develop EF projections under different nitrogen management policies and climate change scenarios, including future climate data from 37 Global Climate Models (GCMs). The annual median and standard deviation (SD) of EF under each scenario represent the projection median and variability derived from climate input data using the 37 GCMs.The dataset filenames follow the structure: 'Scenario'_'N regulation'_'Median/SD', where 'Scenario' corresponds to the different nitrogen management and climate scenarios (e.g., INMS1, INMS2, and INMS3), 'N regulation' corresponds to the different nitrogen management levels (e.g., BAU, LowNRegul, and MedNRegul), and 'Median/SD' indicates whether the file contains the median (Median) or standard deviation (SD) of the projections. All relevant data and further details can be found in the supplementary materials and the cited references.INMS1: Business-as-usual, Land use regulation: Medium, Diet: Meat & dairy-rich, Ambition level: LowINMS2: Low-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: LowINMS3: Medium-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: ModerateINMS4: High-nitrogen regulation, Land use regulation: Medium, Diet: Medium meat & dairy, Ambition level: HighINMS5: Best-case, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighINMS6: Best-case “Plus”, Land use regulation: Strong, Diet: Ambitious diet shift and food-loss/waste reductions, Ambition level: HighINMS7: Bioenergy, Land use regulation: Strong, Diet: Low meat & dairy, Ambition level: HighWe developed this data using the “ranger” package in R 4.1.1, which is accessible at https://cran.r-project.org/web/packages/ranger/. The optimization of the two hyperparameters (ntree and mtry) was performed using the ‘caret’ package, available at https://topepo.github.io/caret/.This database is developed by Li, L., C. Lu, W. Winiwarter, H. Tian, J. Canadell, A. Ito, A.K. Jain, S. Kou-Giesbrecht, S. Pan, N. Pan, H. Shi, Q. Sun, N. Vuichard, S. Ye., S. Zaehle, Q. Zhu. Enhanced nitrous oxide emission factors due to climate change increase the mitigation challenge in the agricultural sector Global Change Biology (In Press)  more » « less
Award ID(s):
1945036
PAR ID:
10590591
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
figshare
Date Published:
Subject(s) / Keyword(s):
Agricultural systems analysis and modelling Sustainable agricultural development Crop and pasture biochemistry and physiology
Format(s):
Medium: X Size: 122175518 Bytes
Size(s):
122175518 Bytes
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emissions while ensuring food security within planetary boundaries. However, climate change might also interact with management practices to alter N2O emission and emission factors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we developed a new hybrid modeling framework that integrates a machine learning model with an ensemble of eight process‐based models to project EFs under different climate and nitrogen policy scenarios. Our findings reveal that EFs are dynamically modulated by environmental changes, including climate, soil properties, and nitrogen management practices. Under low‐ambition nitrogen regulation policies, EF would increase from 1.18%–1.22% in 2010 to 1.27%–1.34% by 2050, representing a relative increase of 4.4%–11.4% and exceeding the IPCC tier‐1 EF of 1%. This trend is particularly pronounced in tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%–0.35% (relative increase of 11.9%–17%). In contrast, high‐ambition policies have the potential to mitigate the increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, our results demonstrate that global EFs are expected to continue rising due to warming and regional drying–wetting cycles, even in the absence of changes in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. This hybrid modeling framework offers a computationally efficient approach to projecting future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating socio‐economic assessments and policy‐making efforts. 
    more » « less
  2. Improving the management of nitrogen fertilizer makes sense. It can reduce farm costs by increasing nitrogen use efficiency without reducing yields. It can also benefit our environment by reducing the emissions of a potent greenhouse gas called nitrous oxide. Better still, by improving nitrogen management, farmers can receive payment for reducing emissions of this gas through the market place. Agriculture is a source and a sink for greenhouse gases that affect our climate. All three of the major greenhouse gases are produced naturally in agricultural soils—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Nitrous oxide is the most important in all field crops but rice due to its link with the use of nitrogen fertilizer. 
    more » « less
  3. Abstract. Relationships between land use and water quality are complex with interdependencies, feedbacks, and legacy effects. Most river water quality studies have assessed catchment land use as areal coverage, but here, we hypothesize and test whether land use intensity – the inputs (fertilizer, livestock) and activities (vegetation removal) of land use – is a better predictor of environmental impact. We use New Zealand (NZ) as a case study because it has had one of the highest rates of agricultural land intensification globally over recent decades. We interpreted water quality state and trends for the 26 years from 1989 to 2014 in the National Rivers Water Quality Network (NRWQN) – consisting of 77 sites on 35 mostly large river systems. To characterize land use intensity, we analyzed spatial and temporal changes in livestock density and land disturbance (i.e., bare soil resulting from vegetation loss by either grazing or forest harvesting) at the catchment scale, as well as fertilizer inputs at the national scale. Using simple multivariate statistical analyses across the 77 catchments, we found that median visual water clarity was best predicted inversely by areal coverage of intensively managed pastures. The primary predictor for all four nutrient variables (TN, NOx, TP, DRP), however, was cattle density, with plantation forest coverage as the secondary predictor variable. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use–water quality relationships. From 1990 to 2014, visual clarity significantly improved in 35 out of 77 (34∕77) catchments, which we attribute mainly to increased dairy cattle exclusion from rivers (despite dairy expansion) and the considerable decrease in sheep numbers across the NZ landscape, from 58 million sheep in 1990 to 31 million in 2012. Nutrient concentrations increased in many of NZ's rivers with dissolved oxidized nitrogen significantly increasing in 27∕77 catchments, which we largely attribute to increased cattle density and legacy nutrients that have built up on intensively managed grasslands and plantation forests since the 1950s and are slowly leaking to the rivers. Despite recent improvements in water quality for some NZ rivers, these legacy nutrients and continued agricultural intensification are expected to pose broad-scale environmental problems for decades to come. 
    more » « less
  4. CONTEXT: To promote circularity in agricultural systems, the utilization of aquatic vegetation for ecological wastewater treatment is a potential mechanism to capture and upcycle nutrients. Agricultural wastewater is an excellent growing medium for aquatic plants like duckweed, offering opportunities for wastewater treatment and conversion of harvested biomass into bio-based products, including protein-rich livestock feed, which can potentially replace conventional soil-based crops such as alfalfa. OBJECTIVE: We hypothesize that nitrogen (N) and phosphorus (P) loadings to the Chesapeake Bay Watershed (CBW) can be reduced via replacing alfalfa cultivation with manure-grown duckweed by: a) reducing excess manure application on agricultural fields; b) reducing synthetic fertilizer application on alfalfa croplands; and c) decreasing the release of fixed N back into the environment from the decomposition of alfalfa crop residue. METHODS: This study developed an optimization framework to identify locations where alfalfa-to-duckweed replacement could be theoretically employed to minimize N and P loads into the CBW. A relative effectiveness (RE) indicator representing landscape-specific nutrient delivery capacity was included within the framework. Using county-level data on alfalfa yields, cropping area, and nutrient inputs from alfalfa croplands and dairy manure, we identified alfalfa cultivation areas that could be removed and replaced with full or partial duckweed cultivation and land conservation for optimal benefits. 
    more » « less
  5. Nitrous oxide (N2O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N2O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N2O mixing ratios from a very tall tower within the US Corn Belt—one of the most intensive agricultural regions of the world—combined with inverse modeling, shows large interannual variability in N2O emissions (316 Gg N2O-N⋅y−1 to 585 Gg N2O-N⋅y−1). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N2O emissions that will exceed 600 Gg N2O-N⋅y−1, on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N2O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N2O emission mitigation efforts to achieve its goals. 
    more » « less