skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kramer, Andrew M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Groundwater extraction compromises the function of groundwater-dependent ecosystems, such as freshwater wetlands. Identifying whether groundwater conservation restores wetland hydrology is a first step toward rehabilitating impaired wetlands. In the Tampa Bay region of Florida (U.S.), groundwater extraction rates have been declining since 1998, partly in response to desiccation of wetlands and waterbodies. This study uses monthly water-level data from 152 depressional wetlands over 28 years (1991–2018) to identify trends in wetland inundation, determine whether those trends vary among wetlands historically exposed to different rates of groundwater extraction, and describe relationships between the timing and extent of cutbacks in groundwater extraction and the timing and extent of changes in wetland inundation. Many wetlands (57 %) exhibited increased inundation in response to cutbacks in groundwater extraction, indicating that water conservation measures are inducing recovery. Further, increased inundation began in most wetlands immediately upon, or within two years of, the time extraction cutbacks occurred, although some recovering wetlands exhibited longer lags. An additional 26 % of wetlands had steady-state water levels with inundation similar to that of reference wetlands, potentially revealing a population of wetlands hydrologically unimpaired by nearby groundwater extraction. Another subset of wetlands (14 %) with steady-state water depths exhibited increasing deviations from basin-full water levels, suggesting subsidence of the wetland basin. Active intervention beyond cutbacks in groundwater extraction may be necessary to restore this subset, whereas passive restoration (reducing extraction) appears adequate for the majority of impacted wetlands. Rising water levels may amplify surface-water connections among wetlands, with ecological and biogeochemical consequences both for individual wetlands and for the whole wetlandscape. As a host of human activities continue to rely on groundwater extraction, this study demonstrates the potential for, as well as variability in, hydrological recovery across a wetland-rich, low-relief landscape following the enactment of water conservation policies. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Wetlands provide essential ecosystem services, including nutrient cycling, flood protection, and biodiversity support, that are sensitive to changes in wetland hydrology. Wetland hydrological inputs come from precipitation, groundwater discharge, and surface run-off. Changes to these inputs via climate variation, groundwater extraction, and land development may alter the timing and magnitude of wetland inundation. Here, we use a long-term (14-year) comparative study of 152 depressional wetlands in west-central Florida to identify sources of variation in wetland inundation during two key time periods, 2005–2009 and 2010–2018. These time periods are separated by the enactment of water conservation policies in 2009, which included regional reductions in groundwater extraction. We investigated the response of wetland inundation to the interactive effects of precipitation, groundwater extraction, surrounding land development, basin geomorphology, and wetland vegetation class. Results show that water levels were lower and hydroperiods were shorter in wetlands of all vegetation classes during the first (2005–2009) time period, which corresponded with low rainfall conditions and high rates of groundwater extraction. Under water conservation policies enacted in the second (2010–2018) time period, median wetland water depths increased 1.35 m and median hydroperiods increased from 46 % to 83 %. Water-level variation was additionally less sensitive to groundwater extraction. The increase in inundation differed among vegetation classes with some wetlands not displaying signs of hydrological recovery. After accounting for effects of several explanatory factors, inundation still varied considerably among wetlands, suggesting a diversity of hydrological regimes, and thus ecological function, among individual wetlands across the landscape. Policies seeking to balance human water demand with the preservation of depressional wetlands would benefit by recognizing the heightened sensitivity of wetland inundation to groundwater extraction during periods of low precipitation. 
    more » « less
  3. Marine species assessments rely heavily on baseline surveys conducted after the 1960s, long after many anthropogenic pressures began, which could lead to misinformed management decisions and poor conservation outcomes. In this study, we collaborated with Florida Fish and Wildlife to conduct stock assessments for mollusks of the west Florida shelf that incorporate shell death assemblages. One of our first assessments was of the Florida Fighting Conch, Strombus alatus, an abundant gastropod that is also under consideration as a replacement fishery for the threatened Queen Conch. Live and dead shells were collected from >300 dredge tows between 2008-2018 covering the entire west Florida shelf. Shells were age-partitioned by 14C- and AAR-calibrated taphonomic criteria. Counts were converted to densities per m2. Inverse distance weighting interpolation of S. alatus death assemblages reveals multiple population centers along the coast and a rapid decrease in density with depth from 25-120 m. In contrast, live conchs were absent in our dredge samples from shelf depths deeper than 40 m. These differences are confirmed by single-visit occupancy methods that account for variation in detectability across the samples. Live-dead differences in spatial distribution are probably influenced by time averaging in death assemblages, which increases detectability of conchs in deeper habitats, where they may be too rare to be sampled alive. However, extirpation of offshore populations was also indicated by independent natural history collection occurrence records, which show numerous live-collected conchs from 1940-1980 but none afterwards, despite an increase in sampling effort. These results suggest that live-dead comparisons can reveal biodiversity loss at the scale of large marine ecosystems. 
    more » « less
  4. This talk will describe the work of the CPN Pre-Impact Baselines Working Group to leverage the wealth of paleoecological and historical ecological data to facilitate estimation of pre-impact species distribution baselines. Species conservation has long focused on preventing human-driven extinctions, and over the past 50 years conservation success has been measured using changes in species’ extinction risk. However, recently calls have been made for a parallel focus on species recovery, and on developing metrics with which to assess its achievement. This call to action within the conservation community is fuelled in part by the recognition that baselines of species abundance and distribution have shifted dramatically across human generations with globally detectable human impacts on ecosystems beginning at least several thousand years ago. While assessment of extinction risk generally only considers species’ change over the past few decades, assessment of recovery requires considering change over centuries to millennia. This requires identifying the baseline status at the time when humans first became a major factor influencing the abundance and distribution of a species. Two new frameworks for considering conservation status relative to a species’ pre-impact baseline have been recently released: EPOCH (Evaluation of POpulation CHange), and the IUCN Green Status of Species. These frameworks have been lauded as moving conservation in a much-needed direction, but there is also concern about whether these methods will be applicable to any but a few well-known, charismatic species. Using a combination of modelling approaches, we are working to estimate species pre-impact distributions in a way that is accessible to conservation practitioners, helping to unshift the baseline and bring species recovery into the mainstream. 
    more » « less
  5. Deforestation alters wildlife communities and modifies human–wildlife interactions, often increasing zoonotic spillover potential. When deforested land reverts to forest, species composition differences between primary and regenerating (secondary) forest could alter spillover risk trajectory. We develop a mathematical model of land-use change, where habitats differ in their relative spillover risk, to understand how land reversion influences spillover risk. We apply this framework to scenarios where spillover risk is higher in deforested land than mature forest, reflecting higher relative abundance of highly competent species and/or increased human–wildlife encounters, and where regenerating forest has either very low or high spillover risk. We find the forest regeneration rate, the spillover risk of regenerating forest relative to deforested land, and how rapidly regenerating forest regains attributes of mature forest determine landscape-level spillover risk. When regenerating forest has a much lower spillover risk than deforested land, reversion lowers cumulative spillover risk, but instaneous spillover risk peaks earlier. However, when spillover risk is high in regenerating and cleared habitats, landscape-level spillover risk remains high, especially when cleared land is rapidly abandoned then slowly regenerates to mature forest. These results suggest that proactive wildlife management and awareness of human exposure risk in regenerating forests could be important tools for spillover mitigation. 
    more » « less
  6. Abstract Populations and communities fluctuate in their overall numbers through time, and the magnitude of fluctuations in individual species may scale to communities. However, the composite variability at the community scale is expected to be tempered by opposing fluctuations in individual populations, a phenomenon often called theportfolio effect. Understanding population variability, how it scales to community variability, and the spatial scaling in this variability are pressing needs given shifting environmental conditions and community composition. We explore evidence for portfolio effects using null community simulations and a large collection of empirical community time series from the BioTIME database. Additionally, we explore the relative roles of habitat type and geographic location on population and community temporal variability. We find strong portfolio effects in our theoretical community model, but weak effects in empirical data, suggesting a role for shared environmental responses, interspecific competition, or a litany of other factors. Furthermore, we observe a clear latitudinal signal – and differences among habitat types – in population and community variability. Together, this highlights the need to develop realistic models of community dynamics, and hints at spatial, and underlying environmental, gradients in variability in both population and community dynamics. 
    more » « less
  7. ABSTRACT Autotrophic microorganisms catalyze the entry of dissolved inorganic carbon (DIC; = CO2 + HCO3− + CO32−) into the biological component of the global carbon cycle, despite dramatic differences in DIC abundance and composition in their sometimes extreme environments. “Cyanobacteria” are known to have CO2 concentrating mechanisms (CCMs) to facilitate growth under low CO2 conditions. These CCMs consist of carboxysomes, containing enzymes ribulose 1,5-bisphosphate oxygenase and carbonic anhydrase, partnered to DIC transporters. CCMs and their DIC transporters have been studied in a handful of other prokaryotes, but it was not known how common CCMs were beyond “Cyanobacteria”. Since it had previously been noted that genes encoding potential transporters were found neighboring carboxysome loci, α-carboxysome loci were gathered from bacterial genomes, and potential transporter genes neighboring these loci are described here. Members of transporter families whose members all transport DIC (CHC, MDT and Sbt) were common in these neighborhoods, as were members of the SulP transporter family, many of which transport DIC. 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxysomes and DIC transporters are widespread not only among “Cyanobacteria”, but also among members of “Proteobacteria” and “Actinobacteria”. 
    more » « less