skip to main content

Search for: All records

Creators/Authors contains: "Krishnamoorthy, Sriram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ultra-wide band gap semiconductor devices based on β-phase gallium oxide (Ga2O3) offer the potential to achieve higher switching performance and efficiency and lower manufacturing cost than that of today’s wide band gap power electronics. However, the most critical challenge to the commercialization of Ga2O3 electronics is overheating, which impacts the device performance and reliability. We fabricated a Ga2O3/4H–SiC composite wafer using a fusion-bonding method. A low-temperature (≤600 °C) epitaxy and device processing scheme was developed to fabricate MOSFETs on the composite wafer. The low-temperature-grown epitaxial Ga2O3 devices deliver high thermal performance (56% reduction in channel temperature) and a power figure of merit of (∼300 MW/cm2), which is the highest among heterogeneously integrated Ga2O3 devices reported to date. Simulations calibrated based on thermal characterization results of the Ga2O3-on-SiC MOSFET reveal that a Ga2O3/diamond composite wafer with a reduced Ga2O3 thickness (∼1 μm) and a thinner bonding interlayer (<10 nm) can reduce the device thermal impedance to a level lower than that of today’s GaN-on-SiC power switches. 
    more » « less
  2. Abstract β -Ga 2 O 3 metal–semiconductor field-effect transistors are realized with superior reverse breakdown voltages ( V BR ) and ON currents ( I DMAX ). A sandwiched SiN x dielectric field plate design is utilized that prevents etching-related damage in the active region and a deep mesa-etching was used to reduce reverse leakage. The device with L GD = 34.5 μ m exhibits an I DMAX of 56 mA mm −1 , a high I ON / I OFF ratio >10 8 and a very low reverse leakage until catastrophic breakdown at ∼4.4 kV. A power figure of merit (PFOM) of 132 MW cm −2 was calculated for a V BR of ∼4.4 kV. The reported results are the first >4 kV class Ga 2 O 3 transistors to surpass the theoretical unipolar FOM of silicon. 
    more » « less
  3. null (Ed.)
  4. null ; null (Ed.)
    Automated techniques for analyzing floating-point code for roundoff error as well as control-flow instability are of growing importance. It is important to compute rigorous estimates of roundoff error, as well as determine the extent of control-flow instability due to roundoff error flowing into conditional statements. Currently available analysis techniques are either non-rigorous or do not produce tight roundoff error bounds in many practical situations. Our approach embodied in a new tool called \seesaw employs {\em symbolic reverse-mode automatic differentiation}, smoothly handling conditionals, and offering tight error bounds. Key steps in \seesaw include weakening conditionals to accommodate roundoff error, computing a symbolic error function that depends on program paths taken, and optimizing this function whose domain may be non-rectangular by paving it with a rectangle-based cover. Our benchmarks cover many practical examples for which such rigorous analysis has hitherto not been applied, or has yielded inferior results. 
    more » « less